精英家教网 > 初中数学 > 题目详情

【题目】如图,锐角ABC内接于O,若O的半径为6,sinA=,求BC的长.

【答案】BC=8.

【解析】试题分析:通过作辅助线构成直角三角形,再利用三角函数知识进行求解.

试题解析:作⊙O的直径CD,连接BD,则CD=2×6=12.

点睛:直径所对的圆周角是直角.

型】解答
束】
22

【题目】如图,一次函数y=k1x+b与反比例函数y=的图象交于A(2,m),B(n,﹣2)两点.过点BBCx轴,垂足为C,且SABC=5.

(1)求一次函数与反比例函数的解析式;

(2)根据所给条件,请直接写出不等式k1x+b>的解集;

(3)若P(p,y1),Q(﹣2,y2)是函数y=图象上的两点,且y1≥y2,求实数p的取值范围.

【答案】(1)反比例函数的解析式是y=一次函数的解析式是y=x+1;(2)﹣3<x<0x>2;(3)p≤﹣2p>0.

【解析】试题分析:(1)把A(2,m),B(n,2)代入反比例函数解析式求出m=n, AAEx轴于E,过BBFy轴于F,延长AEBF交于D根据三角形的面积公式可得出关于n的方程,求出n的值,得出的坐标,代入反比例函数和一次函数的解析式,即可求出答案;
(2)根据的横坐标,结合图象即可得出答案;
(3)分为两种情况:当点在第三象限时和当点在第一象限时,根据坐标和图象即可得出答案.

试题解析:(1)A(2,m),B(n,2)代入得:k2=2m=2n

m=n,

A(2,n),

AAEx轴于E,过BBFy轴于F,延长AEBF交于D

A(2,n),B(n,2),

BD=2nAD=n+2,BC=|2|=2,

解得:n=3,

A(2,3),B(3,2),

A(2,3)代入得:

即反比例函数的解析式是

A(2,3),B(3,2)代入 得:

解得:

即一次函数的解析式是y=x+1;

(2)A(2,3),B(3,2),

∴不等式 的解集是3<x<0x>2;

(3)分为两种情况:当点P在第三象限时,要使,实数p的取值范围是

当点P在第一象限时,要使,实数p的取值范围是P>0,

P的取值范围是p>0.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1在等腰Rt△ABCBAC=90°EAC上(且不与点AC重合.在ABC的外部作等腰Rt△CED使CED=90°连接AD分别以ABAD为邻边作平行四边形ABFD连接AF

1求证AEF是等腰直角三角形

2如图2CED绕点C逆时针旋转当点E在线段BC上时连接AE求证AF=AE

3如图3CED绕点C继续逆时针旋转当平行四边形ABFD为菱形CEDABC的下方时AB=2CE=2求线段AE的长

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,平面直角坐标系中,四边形OABC是长方形,O为原点,点Ax轴上,点Cy轴上且A100),C06),点DAB边上,将CBD沿CD翻折,点B恰好落在OA边上点E处.

1)求点E的坐标;

2)求折痕CD所在直线的函数表达式;

3)请你延长直线CDx轴于点F ①求COF的面积;

②在x轴上是否存在点P,使SOCP=SCOF?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,abc 均为非零实数,且 abc,关于 x 的一元二次方程ax2 bx c 0 有两个实数根 x12。(14a +2b +c _____0a _____0c _________0(填“>”,“=”,“<”)(2)方程 ax2 bx c 0 的另一个根 x1=_______(用含 ac 的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,分别以△ABC的两边AB和AC为边向外作正方形ANMB和正方形ACDE,NC、BE交于点P.

探究:试判断BE和CN的位置关系和数量关系,并说明理由.

应用:Q是线段BC的中点,若BC=6,则PQ=   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】材料一:一个正整数x能写成x=a2﹣b2(a,b均为正整数,且a≠b),则称x为“雪松数”,a,b为x的一个平方差分解,在x的所有平方差分解中,若a2+b2最大,则称a,b为x的最佳平方差分解,此时F(x)=a2+b2

例如:24=72﹣52,24为雪松数,7和5为24的一个平方差分解,32=92﹣72,32=62﹣22,因为92+72>62+22,所以9和7为32的最佳平方差分解,F(32)=92+72

材料二:若一个四位正整数,它的千位数字与个位数字相同,百位数字与十位数字相同,但四个数字不全相同,则称这个四位数为“南麓数”.例如4334,5665均为“南麓数”.

根据材料回答:

(1)请直接写出两个雪松数,并分别写出它们的一对平方差分解;

(2)试证明10不是雪松数;

(3)若一个数t既是“雪松数”又是“南麓数”,并且另一个“南麓数”的前两位数字组成的两位数与后两位数字组成的两位数恰好是t的一个平方差分解,请求出所有满足条件的数t中F(t)的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α.将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.

(1)试说明:△COD是等边三角形;

(2)当α=150°时,试判断△AOD的形状,并说明理由;

(3)探究:当∠BOC为多少度时,△AOD是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某校初一(2)班组织学生从A地到B地步行野营,匀速前进,该班师生共56人,每8人排成一排,相邻两排之间间隔1米,途中经过一座桥CD,队伍从开始上桥到刚好完全离开桥共用了150秒,当队尾刚好走到桥的一端D处时,排在队尾的游班长发现小蒋还在桥的另一端C处拍照,于是以队伍1.5倍的速度返回去找小萍,同时队伍仍按原速度继续前行,30秒后,小蒋发现游班长返回来找他,便立刻以2.1米/秒的速度向游班长方向行进,小蒋行进40秒后与游班长相遇,相遇后两人以队伍2倍的速度前行追赶队伍.

(1)初一(2)班的队伍长度为   米;

(2)求班级队伍行进的速度(列一元一次方程解决问题);

(3)请问:游班长从D处返回赵小萍开始到他们两人追上队首的刘老师一共用了多少时间?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,AB=AC,∠BAC=120°E BC 上一点,以 CE 为直径作⊙O 恰好经过 AC 两点, PFBC BC 于点 G,交 AC 于点 F

1)求证:AB 是⊙O 的切线;

2)如果 CF =2CP =3,求⊙O 的直径 EC

查看答案和解析>>

同步练习册答案