精英家教网 > 初中数学 > 题目详情
21、如图所示,正方形ABCD的BC边上有一点E,∠DAE的平分线交CD于F,试用旋转的思想方法说明AE=DF+BE.
分析:先通过旋转把△ADF顺时针旋转90°得△ABF′,从而利用旋转的性质可知∠1=∠2=∠3,∠AFD=∠FAB,所以通过等量代换可知∠F′AE=∠F′,从而得到FE=AE,即EA=EF′=DF+BE.
解答:解:如右图所示,将△ADF顺时针旋转90°得△ABF′;
则有∠3=∠1,∠AFD=∠F′,F′B=FD,(3分)
∵∠F′AE=∠3+∠BAE,
又∵四边形ABCD为正方形,
∴AB∥CD,
∴∠AFD=∠FAB,(4分)
∵∠FAB=∠2+∠BAE,
∴∠AFD=∠2+∠BAE,
又∵∠DAE的平分线交CD于F,(5分)
∴∠1=∠2,(6分)
∴∠3=∠2,
∴∠AFD=∠3+∠BAE,
∴∠F′=∠3+∠BAE,(7分)
∴∠F′AE=∠F′,
∴EA=EF′=DF+BE.(9分)
点评:主要考查了角平分线的定义和旋转的性质,解题的关键是知道旋转后的图形与原来的图形全等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

4、如图所示,正方形ABCD中,E,F是对角线AC上两点,连接BE,BF,DE,DF,则添加下列哪一个条件可以判定四边形BEDF是菱形(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD中,E为AB中点,F为AD中点,DE、CF交于O点,求证:DE⊥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的对角线AC,BD相交于点O,DE平分∠ODC交OC于点E,若AB=2,则线段OE的长为(  )
A、
2
2
B、
2
2
3
C、2-
2
D、
2
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,正方形ABCD的边长为1,点E为AB的中点,以E为圆心,1为半径作圆,分别交AD,BC于M,N两点,与DC切于点P,则图中阴影部分面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示的正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1,再作出△AB1C1关于原点O成中心对称的△A1B2C2.(要求:用直尺作出图形即可,不用保留作图痕迹,不写作法.)
(2)点B1的坐标是
(-2,-3)
(-2,-3)
,点C2的坐标是
(3,1)
(3,1)

(3)求△ABC绕点A逆时针旋转90°的过程中,线段AB扫过的面积.

查看答案和解析>>

同步练习册答案