精英家教网 > 初中数学 > 题目详情
为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,其他三边用总长为60m栅栏围住(如图),若设绿化带的BC边长为x m,绿化带的面积为y平方米.
(1)求y与x的函数关系式,并写出自变量的取值范围;
(2)是否存在绿化带BC的长的某个值,使得绿化带的面积为450平方米?若存在,请求出这个值;若不存在,请说明理由.
分析:(1)根据矩形的面积公式列出关于二次函数解析式;根据墙长、x、y所表示的实际意义来确定x的取值范围;
(2)利用一元二次方程的解分析得出即可.
解答:解:(1)由题意得:y=x×
60-x
2
=-
1
2
x2+30x,自变量x的取值范围是0<x≤25;

(2)当绿化带的面积为450平方米时,
450=-
1
2
x2+30x,
解得:x1=x2=30,
∵0<x≤25,
∴x=30不合题意,
当不存在绿化带BC的长的某个值,使得绿化带的面积为450平方米.
点评:此题主要考查了二次函数的应用以及一元二次方程的应用,注意在求自变量x的取值范围时,要根据函数中自变量所表示的实际意义来确定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化精英家教网带一边靠墙,另三边用总长为40m的栅栏围住(如图4).若设绿化带的BC边长为xm,绿化带的面积为ym2
(1)求y与x之间的函数关系式,并写出自变量x的取值范围;
(2)当x为何值时,满足条件的绿化带的面积最大.

查看答案和解析>>

科目:初中数学 来源: 题型:

为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一条矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带BC边长为xm,绿化带的面积为ym2,求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为xm,绿化带的面积为ym2.则y与x之间的函数关系式是
y=-
1
2
x2+20x
y=-
1
2
x2+20x
,自变量x的取值范围是
0<x≤25
0<x≤25

查看答案和解析>>

科目:初中数学 来源:2011-2012学年浙江省杭州市萧山区朝晖中学九年级(上)第一次月考数学试卷(解析版) 题型:填空题

为了改善小区环境,某小区决定要在一块一边靠墙(墙长25m)的空地上修建一个矩形绿化带ABCD,绿化带一边靠墙,另三边用总长为40m的栅栏围住(如图).若设绿化带的BC边长为xm,绿化带的面积为ym2.则y与x之间的函数关系式是    ,自变量x的取值范围是   

查看答案和解析>>

同步练习册答案