精英家教网 > 初中数学 > 题目详情
如图甲,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不运动至M,C),以AB为直径作⊙O,过点P的切线交AD于点F,切点为E.
(1)求四边形CDFP的周长;
(2)请连接OF,OP,求证:OF⊥OP;
(3)延长DC,FP相交于点G,连接OE并延长交直线DC于H(如图乙).是否存在点P使△EFO∽△EHG(其对应关系是E←→E,F←→H,O←→G)?如果存在,试求此时的BP的长;如果不存在,请说明理由.

【答案】分析:(1)由ABCD为正方形,得到∠A与∠B都为直角,根据切线的判断方法,得到AD与BC都为圆的切线,又PF为圆O的切线,根据切线长定理即可得到FE=FA,PE=PB,根据等量代换的方法得到四边形CDFP的周长等于AD+BC+CD,根据正方形的边长为2,求出周长即可;
(2)连接OF,OP,OE,由AF,BP是⊙O的切线,PF是⊙O的切线,根据切线长定理即可得∠EOF=∠AOF,∠EOP=∠BOP,又由∠AOF+∠EOF+∠EOP+∠BOP=180°,即可证得OF⊥OP;
(3)存在.理由是:当Rt△EFO∽Rt△EHG时,必须使∠EHG=∠EFO,而根据平行得到∠EHG=∠EOA=2∠EOF,即∠EFO=2∠EOF,又因为∠FEO为90°,所以∠EOF=∠AOF=30°,根据30°的正切值求出AF的长即为y的值,然后代入(2)中的函数关系式即可求出x的值.
解答:(1)解:∵四边形ABCD是正方形,
∴∠A=∠B=90°,
∴AF,BP是⊙O的切线,
又∵PF是⊙O的切线,
∴FE=FA,PE=PB,
∴四边形CDFP的周长为:CD+DF+EF+CP=AD+DC+CB=6;

(2)证明:连接OF,OP,OE,
∵AF,BP是⊙O的切线,PF是⊙O的切线
∴∠EOF=∠AOF,∠EOP=∠BOP,
∵∠AOF+∠EOF+∠EOP+∠BOP=180°,
∴2∠FOE+2∠EOP=180°,
∴∠EOF+∠EOP=90°,
∴OF⊥OP;

(3)解:存在.理由如下:
∵∠EOF=∠AOF,
∴∠EHG=∠EOA=2∠EOF,
当∠EFO=∠EHG=2∠EOF时,即∠EOF=30°时,Rt△EFO∽Rt△EHG,
设AF=y,BP=x,
此时在Rt△AFO中,
y=AF=OA•tan30°=
即x==
解得:
∴当 时,△EFO∽△EHG.
点评:此题综合考查了切线长定理,切线的性质,相似三角形的判定与性质以及正方形的性质等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF,BD之间的位置关系为
 
,数量关系为
 

②当点D在线段BC的延长线时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.
试探究:当△ABC满足一个什么条件时,CF⊥BC(点C,F重合除外)画出相应图形,并说明理由.(画图不写作法)
(3)若AC=4
2
,BC=3,在(2)的条件下,设正方形ADEF的边DE与线段CF相交于点P,求线段CP长的最大值.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
精英家教网
(1)如果AB=AC,∠BAC=90度.
①当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为
 
,数量关系为
 

②当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立为什么(要求写出证明过程)
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且∠BCA=45°时,
①请你判断线段CF、BD之间的位置关系,并说明理由(要求写出证明过程).
②若AC=4
2
,CF=3.求正方形ADEF的边长(要求写出计算过程).

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图甲,在△ABC中,∠ACB为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.解答下列问题:
(1)如果AB=AC,∠BAC=90°,
①当点D在线段BC上时(与点B不重合),如图乙,线段CF、BD之间的位置关系为
垂直
,数量关系为
相等

②当点D在线段BC的延长线上时,如图丙,①中的结论是否仍然成立,为什么?
(2)如果AB≠AC,∠BAC≠90°点D在线段BC上运动.试探究:当△ABC满足一个什么条件时,CF⊥BC(点C、F重合除外)?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列问题:
(1)当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为
垂直
垂直
,数量关系为
相等
相等

(2)当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)

查看答案和解析>>

科目:初中数学 来源: 题型:

(本小题满分12分)
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.
(1)如果AB=AC,∠BAC=90º.
解答下列问题:
①当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为     ,数量关系为     
②当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)
(2)如果AB≠AC,∠BAC≠90°,点D在线段BC上运动.且∠BCA=45°时,如图丙请你判断线段CF、BD之间的位置关系,并说明理由(要求写出证明过程).

查看答案和解析>>

同步练习册答案