精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程kx2+2(k+4)x+(k-4)=0
(1)若方程有实数根,求k的取值范围
(2)若等腰三角形ABC的边长a=3,另两边b和c恰好是这个方程的两个根,求△ABC的周长.
分析:(1)计算方程的根的判别式,若△=b2-4ac≥0,则方程有实数根;
(2)已知a=3,则a可能是底,也可能是腰,分两种情况求得b,c的值后,再求出△ABC的周长.注意两种情况都要用三角形三边关系定理进行检验.
解答:解:(1)∵关于x的一元二次方程kx2+2(k+4)x+(k-4)=0方程有实数根,
∴b2-4ac=[2(k+4)]2-4k(k-4)≥0,
解得:k≥-
4
3
且k≠0;

(2)①若a=3为底边,则b,c为腰长,则b=c,则△=0.
∴b2-4ac=[2(k+4)]2-4k(k-4)=0,
解得:k=-
4
3

此时原方程化为x2-4x+4=0
∴x1=x2=2,即b=c=2.
此时△ABC三边为3,2,2能构成三角形,
∴△ABC的周长为:3+2+2=8;
②若a=b为腰,则b,c中一边为腰,不妨设b=a=3
代入方程:kx2+2(k+4)x+(k-4)=0得:k×32+2(k+4)×3+(k-4)=0
∴解得:k=-
5
4

∵x1×x2=bc=
k-4
k
=
-
5
4
-4
-
5
4
=
21
5
=3c,
∴c=
7
5

∴△ABC的周长为:3+3+
7
5
=
37
5
点评:此题主要考查了根的判别式及三角形三边关系定理,注意求出三角形的三边后,要用三边关系定理检验.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案