16£®£¨1£©ÏÈ»¯¼ò£¬ÔÙÇóÖµ£º$\frac{1}{x}$¡Â£¨$\frac{{x}^{2}+1}{{x}^{2}-x}$-$\frac{2}{x-1}$£©+$\frac{1}{x+1}$£¬ÆäÖÐx=2-1-20160
£¨2£©ÔĶÁÀí½â
¡¾Ìá³öÎÊÌâ¡¿ÒÑÖª$\frac{x}{4}$=$\frac{y}{3}$=$\frac{z}{2}$=k£¬Çó·Öʽ$\frac{{x}^{2}+{y}^{2}}{xy-yz}$µÄÖµ£®
¡¾·ÖÎöÎÊÌâ¡¿±¾ÌâÒÑÖªÌõ¼þÊÇÁ¬µÈʽ£¬Òò´Ë¿ÉÓÃÉè²ÎÊý·¨£¬¼´Éè³ö²ÎÊýk£¬µÃ³öx£¬y£¬zÓëkµÄ¹Øϵ£¬È»ºóÔÙ´úÈë´ýÇóµÄ·Öʽ»¯¼ò¼´¿É£®
¡¾½â¾öÎÊÌâ¡¿Éè$\frac{x}{4}$=$\frac{y}{3}$=$\frac{z}{2}$=k£¬Ôòx=4k£¬y=3k£¬z=2k£¬½«ËüÃÇ·Ö±ð´úÈë$\frac{{x}^{2}+{y}^{2}}{xy-xz}$Öв¢»¯¼ò£¬¿ÉµÃ·Öʽ$\frac{{x}^{2}+{y}^{2}}{xy-xz}$µÄֵΪ$\frac{25}{4}$£®
¡¾ÍØÕ¹Ó¦Óá¿ÒÑÖª$\frac{x}{3}$=-$\frac{y}{2}$=$\frac{z}{4}$£¬Çó·Öʽ$\frac{{x}^{2}-2xy+{y}^{2}}{{y}^{2}+4yz+4{z}^{2}}$µÄÖµ£®

·ÖÎö £¨1£©Ïȸù¾Ý·Öʽ»ìºÏÔËËãµÄ·¨Ôò°Ñԭʽ½øÐл¯¼ò£¬ÔÙÇó³öxµÄÖµ´úÈë½øÐмÆËã¼´¿É£»
£¨2£©¡¾½â¾öÎÊÌâ¡¿°Ñx=4k£¬y=3k£¬z=2k´úÈë½øÐмÆËã¼´¿É£»
¡¾ÍØÕ¹Ó¦Óá¿Áî$\frac{x}{3}$=-$\frac{y}{2}$=$\frac{z}{4}$=k£¬Ôòx=3k£¬y=-2k£¬z=4k£¬ÔÙ´úÈë·Öʽ½øÐмÆËã¼´¿É£®

½â´ð ½â£º£¨1£©Ô­Ê½=$\frac{1}{x}$¡Â$\frac{{x}^{2}+1-2x}{x£¨x-1£©}$+$\frac{1}{x+1}$
=$\frac{1}{x}$¡Â$\frac{£¨x-1£©^{2}}{x£¨x-1£©}$+$\frac{1}{x+1}$
=$\frac{1}{x}$¡Â$\frac{x-1}{x}$+$\frac{1}{x+1}$
=$\frac{1}{x}$•$\frac{x}{x-1}$+$\frac{1}{x+1}$
=$\frac{1}{x-1}$+$\frac{1}{x+1}$
=$\frac{x+1+x-1}{£¨x-1£©£¨x+1£©}$
=$\frac{2x}{£¨x-1£©£¨x+1£©}$£¬
µ±x=2-1-20160=$\frac{1}{2}$-1=-$\frac{1}{2}$ʱ£¬Ô­Ê½=$\frac{2¡Á£¨-\frac{1}{2}£©}{£¨-\frac{1}{2}-1£©£¨-\frac{1}{2}+1£©}$=$\frac{-1}{£¨-\frac{3}{2}£©¡Á\frac{1}{2}}$=$\frac{4}{3}$£®

£¨2£©¡¾½â¾öÎÊÌâ¡¿°Ñx=4k£¬y=3k£¬z=2k´úÈëµÃ£¬
ԭʽ=$\frac{16{k}^{2}+9{k}^{2}}{12{k}^{2}-8{k}^{2}}$=$\frac{25{k}^{2}}{4{k}^{2}}$=$\frac{25}{4}$£®
¹Ê´ð°¸Îª£º$\frac{25}{4}$£»
¡¾ÍØÕ¹Ó¦Óá¿Áî$\frac{x}{3}$=-$\frac{y}{2}$=$\frac{z}{4}$=k£¬Ôòx=3k£¬y=-2k£¬z=4k£¬
ԭʽ=$\frac{£¨x-y£©^{2}}{£¨y+2z£©^{2}}$=$\frac{£¨3k+2k£©^{2}}{£¨-2k+8k£©^{2}}$=$\frac{25{k}^{2}}{36{k}^{2}}$=$\frac{25}{36}$£®

µãÆÀ ±¾Ì⿼²éµÄÊÇ·ÖʽµÄ»¯¼òÇóÖµ£¬ÔÚ½â´ð´ËÀàÌâĿʱҪעÒ⣬µ±Ìõ¼þÊÇÁ¬µÈʽ£¬Òò´Ë¿ÉÓÃÉè²ÎÊý·¨£¬¼´Éè³ö²ÎÊýk£¬µÃ³öx£¬y£¬zÓëkµÄ¹Øϵ£¬È»ºóÔÙ´úÈë´ýÇóµÄ·Öʽ»¯¼ò¼´¿É£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®Ò»´Îº¯Êýy1=ax+bÓëÒ»´Îº¯Êýy2=-bx-aÔÚͬһƽÃæÖ±½Ç×ø±êϵÖеÄͼÏó´óÖÂÊÇ£¨¡¡¡¡£©
A£®B£®C£®D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬µãA£¬B£¬C£¬DΪ¡ÑOÉϵÄËĸöµã£¬$\widehat{BC}$=$\widehat{CD}$£¬AC½»BDÓÚµãE£¬CE=4£¬CD=6£®
£¨1£©ÇóÖ¤£º¡÷CDE¡×¡÷CAD£»
£¨2£©ÇóAEµÄ³¤£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®¼ÆË㣨$\frac{1}{2}$£©-1¡Á|-3|-£¨-4£©µÄ½á¹ûÊÇ10£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®·½³Ì×é$\left\{\begin{array}{l}{2x+y=4}\\{x+3z=1}\\{x+y+z=7}\end{array}\right.$µÄ½âÊÇ£¨¡¡¡¡£©
A£®$\left\{\begin{array}{l}{x=2}\\{y=2}\\{z=1}\end{array}\right.$B£®$\left\{\begin{array}{l}{x=2}\\{y=1}\\{z=1}\end{array}\right.$C£®$\left\{\begin{array}{l}{x=-2}\\{y=8}\\{z=1}\end{array}\right.$D£®$\left\{\begin{array}{l}{x=2}\\{y=2}\\{z=2}\end{array}\right.$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®Èçͼ£¬ËıßÐÎABCDÊÇÁâÐΣ¬µãOÊǶԽÇÏߵĽ»µã£¬ÈýÌõÖ±Ï߶¼¾­¹ýµãO£¬Í¼ÖÐÒõÓ°Ãæ»ýΪ24cm2£¬ÆäÖÐÒ»¶Ô¶Ô½ÇÏß³¤Îª6cm£¬ÔòÁíÒ»Ìõ¶Ô½ÇÏß³¤Îª16cm£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®Èçͼ£º¡÷ABCÖУ¬¡ÏC=45¡ã£¬µãDÔÚACÉÏ£¬ÇÒ¡ÏADB=60¡ã£¬ABΪ¡÷BCDÍâ½ÓÔ²µÄÇÐÏߣ®
£¨1£©Óó߹æ×÷³ö¡÷BCDµÄÍâ½ÓÔ²£¨±£Áô×÷ͼºÛ¼££¬¿É²»Ð´×÷·¨£©£»
£¨2£©Çó¡ÏAµÄ¶ÈÊý£»
£¨3£©Çó$\frac{AD}{DC}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®Èô¹ØÓÚxµÄ·Öʽ·½³Ì$\frac{x-a}{x+1}$=aÎ޽⣬ÔòaµÄֵΪ¡À1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®Èçͼ£¬ÔÚ¡ÑOµÄÄÚ½ÓËıßÐÎABCDÖУ¬ABÊÇÖ±¾¶£¬¡ÏBCD=120¡ã£¬¹ýµãDµÄÇÐÏßPDÓëÖ±ÏßAB½»ÓÚµãP£¬Ôòsin¡ÏADPµÄֵΪ£¨¡¡¡¡£©
A£®$\frac{\sqrt{3}}{3}$B£®$\frac{\sqrt{3}}{2}$C£®$\frac{\sqrt{2}}{2}$D£®$\frac{1}{2}$

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸