【题目】云南鲁甸6.5级地震后,空军某部奉命赴灾区空投救灾物资,已知物资离开飞机在空中沿抛物线降落,抛物线的顶点在机舱舱口点A处(如图所示).
(1)若物体离开A处后下落的竖直高度AB=160 m时,水平距离BC=200 m,那么要使飞机在竖直高度OA=1 km的空中空投的物资恰好落在居民点P处,求飞机到点P处的水平距离OP应为多少;
(2)根据当时的风力测算,空投物资离开A处的竖直距离为160 m时,它到A处的水平距离将增至400 m.要使飞机在(1)中的点O正上方空投物资到P处,飞机离地面的高度应为多少?
【答案】(1)飞机到P处的水平距离OP应为500 m;(2)飞机离地面的高度应为250 m.
【解析】(1)根据待定系数法,可得函数解析式,根据函数值,可得相应自变量的值;
(2)根据待定系数法,可得函数解析式,根据自变量的值,可得相应的函数值.
(1)由题意知,抛物线的顶点坐标为(0,1 000),∵AB=160 m,BC=200 m,
∴点C的坐标为(200,840).
设抛物线的函数表达式为y=ax2+1 000(a≠0).
∵点C(200,840)在抛物线上,
∴840=a×2002+1 000,
解得a=-.
∴抛物线的函数表达式为y=-x2+1 000.
当y=0时,-x2+1 000=0,
解得x1=500,x2=-500(舍去).
∴飞机到P处的水平距离OP应为500 m.
(2)设飞机离地面的高度为k m,抛物线的函数表达式为y=a'x2+k(a'≠0).
由题意知,点C'(400,k-160)在抛物线上,
∴k-160=a'×4002+k.
解得a'=-.
∴此时抛物线的函数表达式为y=-x2+k.
∵当x=500时,y=0,
∴-×5002+k=0,解得k=250.
∴飞机离地面的高度应为250 m.
科目:初中数学 来源: 题型:
【题目】如图1是边长为的正方形薄铁片,小明将其四角各剪去一个相同的小正方形(图中阴影部分)后,发现剩余的部分能折成一个无盖的长方体盒子,图2为盒子的示意图(铁片的厚度忽略不计).
(1)设剪去的小正方形的边长为,折成的长方体盒子的容积为,直接写出用只含字母的式子表示这个盒子的高为______,底面积为______,盒子的容积为______,
(2)为探究盒子的体积与剪去的小正方形的边长之间的关系,小明列表
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | |
324 | 588 | 576 | 500 | 252 | 128 |
填空:①______,______;
②由表格中的数据观察可知当的值逐渐增大时,的值______.(从“逐渐增大”,“逐渐减小”“先增大后减小”,“先减小后增大”中选一个进行填空)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,阶梯图的每个台阶上都标着一个数, 从下到上的第个至第个台阶上依次标着,且任意相邻四个台阶上的数的和都相等.
求前个台阶上的数的和;
求第个台阶上的数x的值;
从下到上前为奇数)个台阶上的数的和能否为?若能,求出的值;若不能,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】运城市对市民开展了有关雾霾的调查问卷,调查内容是“你认为哪种措施治理雾霾最有效”,有以下四个选项:
A.绿化造林 B.汽车限行 C.拆除燃煤小锅炉 D.使用清洁能源.
调查过程随机抽取了部分市民进行调查,并将调查结果绘制了两幅不完整的统计图,请回答下列问题:
(1)这次被调查的市民共有多少人?
(2)请你将统计图1补充完整.
(3)求图2中项目对应的扇形的圆心角的度数.
(4)请你结合自己的实际情况对有效治理雾霾提几点建议.(至少写一条)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】探究证明:
(1)如图1,在△ABC中,AB=AC,点E是BC上的一个动点,EG⊥AB,EF⊥AC,CD⊥AB,点G,F,D分别是垂足.求证:CD=EG+EF;
猜想探究:
(2)如图2,在△ABC中,AB=AC,点E是BC的延长线上的一个动点,EG⊥AB于G,EF⊥AC交AC延长线于F,CD⊥AB于D,直接猜想CD、EG、EF之间的关系为 CD=EG﹣EF ;
问题解决:
(3)如图3,边长为10的正方形ABCD的对角线相交于点O、H在BD上,且BH=BC,连接CH,点E是CH上一点,EF⊥BD于点F,EG⊥BC于点G,则EF+EG= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学九年级甲、乙两班商定举行一次远足活动,、两地相距10千米,甲班从地出发匀速步行到地,乙班从地出发匀速步行到地.两班同时出发,相向而行.设步行时间为小时,甲、乙两班离地的距离分别为千米、千米,、与的函数关系图象如图所示,根据图象解答下列问题:
(1)直接写出、与的函数关系式;
(2)求甲、乙两班学生出发后,几小时相遇?相遇时乙班离地多少千米?
(3)甲、乙两班相距4千米时所用时间是多少小时?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在△ABC和△ABD中,∠DAB=∠ABC=90°,AD=AB=CB,BD=6cm,F为线段BD上一动点,以每秒1cm的速度从B匀速运动到D,过F作直线FQ⊥AF,且FQ=AF,点Q在直线AF的右侧,设点F运动时间为t(s).
(1)当△ABF为等腰三角形时,t= ;
(2)当F点在线段BO上时,过Q点作QH⊥BD于点H,求证:△AOF≌△FHQ;
(3)当F点在线段OD上运动的过程中,△ABQ的面积是否变化?若不变,求出它的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,禁渔期间,我渔政船在A处发现正北方向B处有一艘可疑船只,测得A、B两处距离为99海里,可疑船只正沿南偏东53°方向航行.我渔政船迅速沿北偏东27°方向前去拦截,2小时后刚好在C处将可疑船只拦截.求该可疑船只航行的速度.
(参考数据:sin27°≈, cos27°≈, tan27°≈, sin53°≈, cos53°≈, tan53°≈)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com