精英家教网 > 初中数学 > 题目详情
(2008•常德)如图,在梯形ABCD中,若AB∥DC,AD=BC,对角线BD、AC把梯形分成了四个小三角形.
(1)列出从这四个小三角形中任选两个三角形的所有可能情况,并求出选取到的两个三角形是相似三角形的概率是多少;(注意:全等看成相似的特例)
(2)请你任选一组相似三角形,并给出证明.

【答案】分析:(1)采用列举法,列举出所有可能出现的情况,再找出相似三角形即可求得;①与③,②与④相似;
(2)利用相似三角形的判定定理即可证得.
解答:解:(1)任选两个三角形的所有可能情况如下六种情况:
①②,①③,①④,②③,②④,③④(2分)
其中有两组(①③,②④)是相似的.
∴选取到的二个三角形是相似三角形的概率是P=(4分)
证明:(2)选择①、③证明.
在△AOB与△COD中,
∵AB∥CD,
∴∠CDB=∠DBA,∠DCA=∠CAB,
∴△AOB∽△COD(8分)
选择②、④证明.
∵四边形ABCD是等腰梯形,
∴∠DAB=∠CBA,
∴在△DAB与△CBA中有
AD=BC,∠DAB=∠CAB,AB=AB,
∴△DAB≌△CBA,(6分)
∴∠ADO=∠BCO.
又∠DOA=∠COB,
∴△DOA∽△COB(8分).
点评:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,即相似三角形的证明.还考查了相似三角形的判定.
练习册系列答案
相关习题

科目:初中数学 来源:2008年全国中考数学试题汇编《二次函数》(09)(解析版) 题型:解答题

(2008•常德)如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年广东省湛江市初中毕业生学业考试6月仿真数学试卷(解析版) 题型:解答题

(2008•常德)如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2008年湖南省常德市中考数学试卷(解析版) 题型:解答题

(2008•常德)如图,已知四边形ABCD是矩形,且MO=MD=4,MC=3.
(1)求直线BM的解析式;
(2)求过A、M、B三点的抛物线的解析式;
(3)在(2)中的抛物线上是否存在点P,使△PMB构成以BM为直角边的直角三角形?若没有,请说明理由;若有,则求出一个符合条件的P点的坐标.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《图形的旋转》(03)(解析版) 题型:解答题

(2008•常德)如图,在直线l上摆放有△ABC和直角梯形DEFG,且CD=6cm;在△ABC中:∠C=90°,∠A=30°,AB=4cm;在直角梯形DEFG中:EF∥DG,∠DGF=90°,DG=6cm,DE=4cm,∠EDG=60度.解答下列问题:

(1)旋转:将△ABC绕点C顺时针方向旋转90°,请你在图中作出旋转后的对应图形△A1B1C,并求出AB1的长度;
(2)翻折:将△A1B1C沿过点B1且与直线l垂直的直线翻折,得到翻折后的对应图形△A2B1C1,试判定四边形A2B1DE的形状并说明理由;
(3)平移:将△A2B1C1沿直线l向右平移至△A3B2C2,若设平移的距离为x,△A3B2C2与直角梯形重叠部分的面积为y,当y等于△ABC面积的一半时,x的值是多少.

查看答案和解析>>

科目:初中数学 来源:2008年全国中考数学试题汇编《圆》(12)(解析版) 题型:解答题

(2008•常德)如图,已知⊙O是△ABC的外接圆,AB为直径,若PA⊥AB,PO过弧AC的中点M,求证:PC是⊙O的切线.

查看答案和解析>>

同步练习册答案