分析 连接BE交AD于O,作AH⊥BC于H.首先证明AD垂直平分线段BE,△BCE是直角三角形,求出BC、BE,在Rt△BCE中,利用勾股定理即可解决问题.
解答 解:如图连接BE交AD于O,作AH⊥BC于H.
在Rt△ABC中,∵AC=4,AB=3,
∴BC=$\sqrt{{3}^{2}+{4}^{2}}$=5,
∵CD=DB,
∴AD=DC=DB=$\frac{5}{2}$,
∵$\frac{1}{2}$•BC•AH=$\frac{1}{2}$•AB•AC,
∴AH=$\frac{12}{5}$,
∵AE=AB,DE=DB=DC,
∴AD垂直平分线段BE,△BCE是直角三角形,
∵$\frac{1}{2}$•AD•BO=$\frac{1}{2}$•BD•AH,
∴OB=$\frac{12}{5}$,
∴BE=2OB=$\frac{24}{5}$,
在Rt△BCE中,EC=$\sqrt{B{C}^{2}-B{E}^{2}}$=$\frac{7}{5}$,
故答案为:$\frac{7}{5}$.
点评 本题考查翻折变换、直角三角形的斜边中线的性质、勾股定理等知识,解题的关键是学会利用面积法求高.
科目:初中数学 来源: 题型:解答题
星期 | 一 | 二 | 三 | 四 | 五 | 六 | 日 |
增减 | +5 | -2 | -4 | +13 | -10 | +16 | -9 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com