分析 先根据线段的垂直平分线的性质和角平分线性质得到有关的角和线段之间的等量关系:∠OBC=∠OCB=30°,OE=BE,OF=FC;再利用三角形的外角等于不相邻的两内角和求出∠OEF=60°,∠OFE=60°.从而判定△OEF是等边三角形即OE=OF=EF,通过线段的等量代换求证即可.
解答 解:连接OE,OF则在等边三角形ABC中.
∵∠ABC、∠ACB的平分线交于点O,OB和OC的垂直平分线交BC于E、F,
∴∠OBC=∠OCB=30°,OE=BE,OF=FC.
∴∠OEF=60°,∠OFE=60°.
∴OE=OF=EF.
∴BE=EF=FC.
点评 此题考查了线段的垂直平分线的性质等和三角形的外角等于不相邻的两内角和以及等边三角形的性质;进行线段的等量代换是正确解答本题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 … |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com