精英家教网 > 初中数学 > 题目详情
已知:已知二次函数的图象对称轴为,且过点B(-1,0).求此二次函数的表达式.

试题分析:先根据抛物线的对称轴方程得到-=2,解得a=-1,然后把B点坐标代入y=-x2+4x+c,求出c的值即可.
试题解析:∵此二次函数图象的对称轴为

解得:
∴此二次函数的表达式为
∵点B(-1,0)在此函数图象上,

解得:
∴此二次函数的表达式为
考点: 待定系数法求二次函数解析式.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:填空题

已知二次函数的对称轴为,则        

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:关于的二次函数y=px2-(3p+2)x+2p+2(p>0)
(1)求证:无论p为何值时,此函数图象与x轴总有两个交点;
(2)设这两个交点坐标分别为(x1,0),(x2,0)(其中x1<x2)且S=x2-2x1,求S关于P的函数解析式

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,平面直角坐标系中,以点C(2,)为圆心,以2为半径的圆与轴交于A、B两点.

(1)求A、B两点的坐标;
(2)若二次函数的图象经过点A、B,试确定此二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

长方体底面周长为50cm,高为10cm.则长方体体积y关于底面的一条边长x的函数解析式是                          .其中x的取值范围是                 .

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知函数y=mx2-6x+1(m是常数).
⑴求证:不论m为何值,该函数的图象都经过y轴上的一个定点;
⑵若该函数的图象与x轴只有一个交点,求m的值.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,直线AB分别交y轴、x 轴于A、B两点,OA=2,,抛物线过A、B两点.

(1)求直线AB和这个抛物线的解析式;
(2)设抛物线的顶点为D,求△ABD的面积
(3)作垂直x轴的直线x=t,在第一象限交直线AB于M,交这个抛物线于N.求当t 取何值时,MN的长度l有最大值?最大值是多少?

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2,若y1≠y2,取y1、y2中的较小值记为M;若y1=y2,记M=y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有   (   )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

抛物线y=2(x-3)2+1的顶点坐标为_________

查看答案和解析>>

同步练习册答案