精英家教网 > 初中数学 > 题目详情
(2012•沈河区模拟)如图,△ABC内接于⊙O,D是
BC
的中点,DE为直径,EM⊥AB于M,EN⊥AC于N.
(1)求证:EM=EN;
(2)已知:AB=5cm,AC=3cm,求AN的长;
(3)在(2)的条件下,若DE平分AB,求sin∠DEM的值.
分析:(1)连BE、EC、AE,根据D是
BC
的中点,DE为直径,可得出点E是
BEC
的中点,所以
BE
=
CE
,再由四边形AEBC是圆内接四边形可得出∠EAN=∠CBE=∠BAE,根据AAS定理可知△AEM≌△AEN,故可得出结论;
(2))根据(1)中△AEM≌△AEN,得出EM=EN,AN=AM,故
BE
=
CE
,BE=CE,再由HL定力得出Rt△BME≌Rt△CNE,故BM=CN,即AB-AM=AB-AN=AC+AN,AN=
AB-AC
2
,由此即可得出结论;
(3))根据DE是直径可知当DE平分AB时,AB也是直径,故∠ACB=90°,设DE、BC交于点G,根据AAS定理得出△BOG≌△EOM,故∠ABC=∠DEM,sin∠DEM=sin∠ABC=
AC
AB
,由此即可得出结论.
解答:(1)证明:连BE、EC、AE,
∵D是
BC
的中点,DE为直径,
∴点E是
BEC
的中点,
BE
=
CE

∵四边形AEBC是圆内接四边形,
∴∠EAN=∠CBE=∠BAE,
∵EM⊥AB于M,EN⊥AC于N,
∴∠AME=∠ANE=90°,
在△AEM与△AEN中,
∠EAN=∠BAE
∠AME=∠ANE
AE=AE

∴△AEM≌△AEN(AAS),
∴EM=EN;

(2)∵由(1)知△AEM≌△AEN,
∴EM=EN,AN=AM,
BE
=
CE

∴BE=CE,
在Rt△BME与Rt△CNE中,
BE=CE
EM=EN

∴Rt△BME≌Rt△CNE(HL),
∴BM=CN,即AB-AM=AB-AN=AC+AN,
∴AN=
AB-AC
2
=
5-3
2
=1cm;

(3)∵DE是直径,
∴当DE平分AB时,AB也是直径,
∴∠ACB=90°,
设DE、BC交于点G,
在△BOG与△EOM中,
∠OGB=∠OME
∠BOG=∠EOM
OE=OB

∴△BOG≌△EOM(AAS),
∴∠ABC=∠DEM,
∴sin∠DEM=sin∠ABC=
AC
AB
=
3
5
点评:本题考查的是圆的综合题,涉及到圆内接四边形的性质、全等三角形的判定与性质、锐角三角函数的定义等知识,难度较大.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•沈河区模拟)当b<0时,化简a
ab3
+b
a3b
=
-2ab
ab
-2ab
ab

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•沈河区模拟)抛物线y=-x2-x-1的对称轴是
直线x=-
1
2
直线x=-
1
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•沈河区模拟)弦AB把⊙O分成的两条弧的度数比是1:2,则弦AB所对的圆周角是
60°或120°
60°或120°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•沈河区模拟)已知⊙O是锐角△ABC的外接圆,AB=5cm,AC=
10
cm,BC.边上的高AD=3cm.
(1)求△ABC外接圆的半径.
(2)取
AC
的中点G,连BG交AD于E,试求BE的长.
(3)若动点M从点D出发在线段DB上来回匀速运动,速度为2cm/秒,动点N同时从点B出发在劣弧BC上匀速运动,到C点停止运动.问是否存在某一时间(最短时间)使△MNB与△ADC相似?若存在,试求出MN•MB的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案