精英家教网 > 初中数学 > 题目详情
如图1,抛物线轴交于两点,与轴交于点,连结AC,若
(1)求抛物线的解析式;
(2)抛物线对称轴上有一动点P,当时,求出点的坐标;
(3)如图2所示,连结是线段上(不与重合)的一个动点.过点作直线,交抛物线于点,连结,设点的横坐标为.当t为何值时,的面积最大?最大面积为多少?
(1) y=x2-3x+2;;(2)()或();(3)t=1时,S△BCN的最大值为1.

试题分析:(1)已知了C点的坐标,即可得到OC的长,根据∠OAC的正切值即可求出OA的长,由此可得到A点的坐标,将A、C的坐标代入抛物线中,即可确定该二次函数的解析式;
(2)根据抛物线的解析式即可确定其对称轴方程,由此可得到点P的横坐标;若∠APC=90°,则∠PAE和∠CPD是同角的余角,因此两角相等,则它们的正切值也相等,由此可求出线段PE的长,即可得到点P点的坐标;(用相似三角形求解亦可)
(3)根据B、C的坐标易求得直线BC的解析式,已知了点M的横坐标为t,根据直线BC和抛物线的解析式,即可用t表示出M、N的纵坐标,由此可求得MN的长,以MN为底,B点横坐标的绝对值为高,即可求出△BNC的面积(或者理解为△BNC的面积是△CMN和△MNB的面积和),由此可得到关于S(△BNC的面积)、t的函数关系式,根据所得函数的性质即可求得S的最大值及对应的t的值.
试题解析:(1)∵抛物线y=x2+bx+c过点C(0,2),
∴c=2;
又∵tan∠OAC==2,
∴OA=1,即A(1,0);
又∵点A在抛物线y=x2+bx+2上,
∴0=12+b×1+2,b=-3;
∴抛物线对应的二次函数的解析式为y=x2-3x+2;
(2)存在.
过点C作对称轴l的垂线,垂足为D,如图所示,

∴x=-
∴AE=OE-OA=
∵∠APC=90°,
∴tan∠PAE=tan∠CPD,
,即
解得PE=或PE=
∴点P的坐标为()或().
(3)如图所示,易得直线BC的解析式为:y=-x+2,

∵点M是直线l′和线段BC的交点,
∴M点的坐标为(t,-t+2)(0<t<2),
∴MN=-t+2-(t2-3t+2)=-t2+2t,
∴S△BCN=S△MNC+S△MNB=MN·t+MN·(2-t),
=MN·(t+2-t)=MN=-t2+2t(0<t<2),
∴S△BCN=-t2+2t=-(t-1)2+1,
∴当t=1时,S△BCN的最大值为1.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:单选题

在平面直角坐标系中,将抛物线y=3x2先向右平移1个单位,再向上平移2个单位,得到的抛物线的解析式是(  )
A.y=3(x+1)2+2B.y=3(x+1)2﹣2
C.y=3(x﹣1)2+2D.y=3(x﹣1)2﹣2

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知二次函数(a≠0)的图象经过点A,点B.
(1)求二次函数的表达式;
(2)若反比例函数(x>0)的图象与二次函数(a≠0)的图象在第一象限内交于点落在两个相邻的正整数之间,请你直接写出这两个相邻的正整数;
(3)若反比例函数(x>0,k>0)的图象与二次函数(a≠0)的图象在第一象限内交于点,且,试求实数k的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

矩形纸片ABCD中,AB=5,AD=4.
(1)如图1,四边形MNEF是在矩形纸片ABCD中裁剪出一个正方形.你能否在该矩形中裁剪出一个面积最大的正方形,最大面积是多少?说明理由;
(2)请用矩形纸片ABCD剪拼成一个面积最大的正方形.要求:在图2的矩形ABCD中画出裁剪线,并在网格中画出用裁剪出的纸片拼成的正方形示意图(使正方形的顶点都在网格的格点上).

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线经过点A(3,2),B(0,1)和点C
(1)求抛物线的解析式;
(2)如图,若抛物线的顶点为P,点A关于对称轴的对称点为M,过M的直线交抛物线于另一点N(N在对称轴右边),交对称轴于F,若,求点F的坐标;
(3)在(2)的条件下,在y轴上是否存在点G,使△BMA与△MBG相似?若存在,求点G的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图所示,现有一张边长为4的正方形纸片ABCD,点P为正方形AD边上的一点(不与点A、点D重合)将正方形纸片折叠,使点B落在P处,点C落在G处,PG交DC于H,折痕为EF,连接BP、BH.
(1)求证:∠APB=∠BPH;
(2)当点P在边AD上移动时,△PDH的周长是否发生变化?并证明你的结论;
(3)设AP为x,四边形EFGP的面积为S,求出S与x的函数关系式,试问S是否存在最小值?若存在,求出这个最小值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

抛物线(b,c均为常数)与x轴交于两点,与y轴交于点
(1)求该抛物线对应的函数表达式;
(2)若P是抛物线上一点,且点P到抛物线的对称轴的距离为3,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

实验数据显示,一般成人喝半斤低度白酒后,1.5时内其血液中酒精含量y(毫克/百毫升)与时间(时)的关系可近似地用二次函数刻画;1.5时后(包括1.5时)y与x可近似地用反比例函数(k>0)刻画(如图所示).
(1)根据上述数学模型计算:
①喝酒后几时血液中的酒精含量达到最大值?最大值为多少?
②当=5时,y=45.求k的值.
(2)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完半斤低度白酒,第二天早上7:00能否驾车去上班?请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图1,抛物线y=-x2+bx+c的顶点为Q,与x轴交于A(-1,0)、B(5,0)两点,与y轴交于点C.
(1)求抛物线的解析式及其顶点Q的坐标;
(2)在该抛物线的对称轴上求一点P,使得△PAC的周长最小,请在图中画出点P的位置,并求点P的坐标;
(3)如图2,若点D是第一象限抛物线上的一个动点,过D作DE⊥x轴,垂足为E.
①有一个同学说:“在第一象限抛物线上的所有点中,抛物线的顶点Q与x轴相距最远,所以当点D运动至点Q时,折线D-E-O的长度最长”,这个同学的说法正确吗?请说明理由.
②若DE与直线BC交于点F.试探究:四边形DCEB能否为平行四边形?若能,请直接写出点D的坐标;若不能,请简要说明理由.

查看答案和解析>>

同步练习册答案