【题目】数列{an}中,a2n=a2n﹣1+(﹣1)n , a2n+1=a2n+n,a1=1则a100= .
【答案】1226
【解析】解:数列{an}中,a2n=a2n﹣1+(﹣1)n , a1=1, 则a2=1﹣1=0,a2n=a2n﹣1+(﹣1)n , 可得:a2n+2=a2n+1+(﹣1)n+1 , a2n+1=a2n+n,
可得a2n+2=a2n+n+(﹣1)n+1 ,
a4=a2+1+(﹣1)1+1 ,
a6=a4+2+(﹣1)2+1 ,
a8=a6+3+(﹣1)3+1 ,
…
a100=a98+49+(﹣1)49+1 ,
可得a100=0+1+2+3+…+49+1﹣1+1﹣1+…+1
= =1226.
所以答案是:1226.
【考点精析】本题主要考查了数列的通项公式的相关知识点,需要掌握如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.
科目:初中数学 来源: 题型:
【题目】设函数f(x)= ,D是由x轴和曲线y=f(x)及该曲线在点(1,0)处的切线所围成的封闭区域,则z=x2+y2+2x+2y在D上的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知椭圆 内有一点M(2,1),过M的两条直线l1 , l2分别与椭圆E交于A,C和B,D两点,且满足 (其中λ>0,且λ≠1),若λ变化时,AB的斜率总为 ,则椭圆E的离心率为( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知f(x)=x2(1nx﹣a)+a,则下列结论中错误的是( )
A.a>0,x>0,f(x)≥0
B.a>0,x>0,f(x)≤0
C.a>0,x>0,f(x)≥0
D.a>0,x>0,f(x)≤0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数f(x)= (e为自然对数的底数),曲线y=f(x)在(1,f(1))处的切线与直线4x+3ey+1=0互相垂直. (Ⅰ)求实数a的值;
(Ⅱ)若对任意x∈( ,+∞),(x+1)f(x)≥m(2x﹣1)恒成立,求实数m的取值范围;
(Ⅲ)设g(x)= ,Tn=1+2[g( )+g( )+g( )+…+g( )](n=2,3…).问:是否存在正常数M,对任意给定的正整数n(n≥2),都有 + + +…+ <M成立?若存在,求M的最小值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知函数f(x)=xlnx﹣ x2(a∈R).
(1)若x>0,恒有f(x)≤x成立,求实数a的取值范围;
(2)若函数g(x)=f(x)﹣x有两个相异极值点x1、x2 , 求证: + >2ae.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知在数列{an}中,a1=4,an>0,前n项和为Sn , 若 .
(1)求数列{an}的通项公式;
(2)若数列 的前n项和为Tn , 求Tn .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知椭圆 的右焦点为F(1,0),且经过点
(1)求椭圆P的方程;
(2)已知正方形ABCD的顶点A,C在椭圆P上,顶点B,D在直线7x﹣7y+1=0上,求该正方形ABCD的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,AB≠BC,连接AC,AE是∠BAD的平分线,交边DC的延长线于点F.
(1)证明:CE=CF;
(2)若∠B=60°,BC=2AB,试判断四边形ABFC的形状,并说明理由.(如图2所示)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com