精英家教网 > 初中数学 > 题目详情
代数式 
n
m
2-
x
2
; 
2h
π
15
x+y
中,是分式的有几个(  )
A、1个.B、2个.
C、3个.D、4个.
分析:判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式.
解答:解:2-
x
2
2h
π
中的分母中均不含有字母,因此它们是整式,而不是分式.
 
n
m
15
x+y
中,分母中含有字母,因此是分式,共有2个.
故选B.
点评:本题主要考查分式的定义,注意π不是字母,是常数,所以
2h
π
不是分式,是整式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

代数式
n
m
;2-
x
y
2
π
+x
15
x+y
中,是分式的有几个(  )
A、1个B、2个C、3个D、4个

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.

(1)你认为图②中的阴影部分的正方形的边长等于
m-n
m-n

(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①
(m-n)2
(m-n)2

方法②
(m+n)2-4mn
(m+n)2-4mn

(3)观察图②,你能写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图①所示是一个长为2m,宽为2n的长方形,沿图中虚线用剪刀均分成四个小长方形,然后按图②的方式拼成一个正方形.
(1)你认为图②中的阴影部分的正方形的边长等于
m-n
m-n

(2)请用两种不同的方法列代数式表示图②中阴影部分的面积.
方法①
(m+n)2-4mn
(m+n)2-4mn

方法②
(m-n)2
(m-n)2

(3)观察图,你能写出(m+n)2,(m-n)2,mn这三个代数式之间的等量关系吗?
(4)根据(3)题中的等量关系,解决如下问题:若a+b=3,ab=2,则求(a-b)2

查看答案和解析>>

科目:初中数学 来源: 题型:

操作探究:图1a是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀均分成四块小长方形,然后按图1b的形状拼成一个正方形.
(1)你认为图1b中的阴影部分的正方形的边长等于多少?
m-n
m-n

(2)请用两种不同的方法求图1b中阴影部分的面积.

方法1:
(m-n)2
(m-n)2

方法2:
(m+n)2-4mn
(m+n)2-4mn

(3)观察图1b你能写出下列三个代数式之间的等量关系吗?代数式:(m+n)2,(m-n)2,mn.
(m-n)2=(m+n)2-4mn
(m-n)2=(m+n)2-4mn

(4)根据(3)题中的等量关系,解决如下问题:若a+b=7,ab=5,求(a-b)2的值.
(5)已知:如图2,现有的a×a,b×b正方形和a×b的矩形纸片若干块,试选用这些纸片(每种至少用一次)在如图3的虚线方框中拼成一个矩形(每两个纸片之间既不重叠,也无空隙,作出的图中必须保留拼图的痕迹),使拼出的矩形面积为2a2+5ab+2b2,并标出此矩形的长和宽.

查看答案和解析>>

同步练习册答案