【题目】下列运算正确的是( )
A. a3+a4=a7 B. (2a4)3=8a7 C. 2a3a4=2a7 D. a8÷a2=a4
科目:初中数学 来源: 题型:
【题目】给出下列命题:
(1)平行四边形的对角线互相平分;(2)矩形的对角线相等;(3)菱形的对角线互相垂直平分;(4)正方形的对角线相等且互相垂直平分.其中,真命题的个数是( )
A. 2B. 3C. 4D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知 (x+3)(x-2)=x2+ax+b , 则a、b的值分别是( )
A.a=-1,b=-6
B.a=1,b=-6
C.a=-1,b=6
D.a=1,b=6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将矩形ABCD绕点C顺时针旋转90°得到矩形FGCE,点M、N分别是BD、GE的中点,若BC=14,CE=2,则MN的长( )
A. 7 B. 8 C. 9 D. 10
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解某县30~50岁成人的健康状况,采取了抽样调查方式获得结果,下面所采取的抽样合理的是( )
A. 抽查了该县30~50岁的男性公民 B. 抽查了该县城区30~50岁的成人20名
C. 抽查了该县所有30~50岁的工人 D. 随机抽查了该县所有30~50岁成人400名
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题背景:
如图①,在四边形ADBC中,∠ACB=∠ADB=90°,AD=BD,探究线段AC,BC,CD之间的数量关系.
小吴同学探究此问题的思路是:将△BCD绕点D,逆时针旋转90°到△AED处,点B,C分别落在点A,E处(如图②),易证点C,A,E在同一条直线上,并且△CDE是等腰直角三角形,所以CE=CD,从而得出结论:AC+BC=CD.
简单应用:
(1)在图①中,若AC=,BC=,则CD= .
(2)如图③,AB是⊙O的直径,点C、D在⊙上,,若AB=13,BC=12,求CD的长.
拓展规律:
(3)如图④,∠ACB=∠ADB=90°,AD=BD,若AC=m,BC=n(m<n),求CD的长(用含m,n的代数式表示)
(4)如图⑤,∠ACB=90°,AC=BC,点P为AB的中点,若点E满足AE=AC,CE=CA,点Q为AE的中点,则线段PQ与AC的数量关系是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com