精英家教网 > 初中数学 > 题目详情
△ABC是一张等腰直角三角形纸板,∠C=Rt∠,AC=BC=2,(1)要在这张纸板中剪出一个尽可能大的正方形,有甲、乙两种剪法(如图1),比较甲.乙两种剪法,哪种剪法所得的正方形面积大?请说明理由。

(2)图1中甲种剪法称为第1次剪取,记所得正方形面积为;按照甲种剪法,在余下的△ADE和△BDF中,分别剪取正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为(如图2),则;再在余下的四个三角形中,用同样方法分别剪取正方形,得到四个相同的正方形,称为第3次剪取,并记这四个正方形面积和为,继续操作下去……,则第10次剪取时,
(3)求第10次剪取后,余下的所有小三角形的面积之和。
(1)甲种剪法所得的正方形面积更大,理由见解析(2)(3)
(1)解法1:如图甲,由题意,得AE=DE=EC,即EC=1,S正方形CFDE=12=1
如图乙,设MN=x,则由题意,得AM=MQ=PN=NB=MN=x,

解得

又∵
∴甲种剪法所得的正方形面积更大.
说明:图甲可另解为:由题意得点D、E、F分别为AB、AC、BC的中点,S正方形OFDE=1.
解法2:如图甲,由题意得AE=DE=EC,即EC=1,
如图乙,设MN=x,则由题意得AM=MQ=QP=PN=NB=MN=x,

解得
又∵,即EC>MN.
∴甲种剪法所得的正方形面积更大.
(2)
(3)解法1:探索规律可知:
剩余三角形面积和为2﹣(S1+S2+…+S10)=2﹣(1++…+)=
解法2:由题意可知,
第一次剪取后剩余三角形面积和为2﹣S1=1=S1
第二次剪取后剩余三角形面积和为
第三次剪取后剩余三角形面积和为

第十次剪取后剩余三角形面积和为
(1)分别求出甲、乙两种剪法所得的正方形面积,进行比较即可;
(2)按图1中甲种剪法,可知后一个三角形的面积是前一个三角形的面积的,依此可知结果;
(3)探索规律可知:,依此规律可得第10次剪取后,余下的所有小三角形的面积之和.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图, 等腰梯形ABCD中,AB=15,AD=20,∠C=30º.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.
(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围.
(2)当五边形BCDNM面积最小时,请判断△AMN的形状.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,直角梯形中,,将腰以点为中心逆时针旋转,连结,则的面积是       

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

四边形ABCD是正方形.
(1)如图1,点G是BC边上任意一点(不与B、C两点重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.求证:△ABF≌△DAE;
(2)在(1)中,线段EF与AF、BF的等量关系是              (直接写出结论即可,不需要证明);
(3)如图2,点G是CD边上任意一点(不与C、D两点重合),连接AG,作BF⊥AG于点F,DE⊥AG于点E.那么图中全等三角形是             ,线段EF与AF、BF的等量关系是              (直接写出结论即可,不需要证明).

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图,三个正方形围成一个直角三角形,64、400分别为所在正方形的面积,则图中字母M所代表的正方形面积是
A.400+64;B.;C.400-64;D.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A沿边AB向点B以1cm/s的速度移动;同时,点Q从点B沿边BC向点C以2cm/s的速度移动,设运动的时间为ts(0<t<6),试尝试探究下列问题:
(1)当t为何值时,△PBQ的面积等于8cm?
(2)求证:四边形PBQD面积为定值.
(3)当t为何值时,△PDQ是等腰三角形?写出探索过程.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,在菱形ABCD中,BD为对角线,E、F分别是DC.DB的中点,若EF=6,则菱形ABCD的周长是    ▲   

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图,矩形中,上的一点,沿直线折叠,点恰好落在边上一点处,则           

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

如图是利用四边形的不稳定性制作的菱形凉衣架.已知其中每个菱形的边长为13 cm,,那么凉衣架两顶点之间的距离为           cm.

查看答案和解析>>

同步练习册答案