精英家教网 > 初中数学 > 题目详情
在三角形纸片ABC中,∠C=90°,∠A=30°,AC=3,折叠该纸片,使点A与点B重合,折痕与AB、AC分别相交于点D和点E(如图),折痕DE的长为
1
1
分析:由折叠可得△ADE≌△BDE≌△BCE,易得AD的值,进而根据30°的三角函数值可得DE的值.
解答:解:∵∠C=90°,∠A=30°,AC=3,
∴AB=AC÷cosA=2
3

∴AD=BD=
3

由折叠可得∠ADE=90°,
∴DE=AD×tan30°=1.
故答案为1.
点评:考查折叠问题;判断出所求线段所在的三角形的形状及相关线段长是解决本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,∠ACB=90°,BC=3,AB=6.在AC上取一点E,以BE为折痕,使AB的一部分与BC重合,A与BC延长线上的点D重合,则CE的长度为(  )
A、3
B、6
C、
3
D、2
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•惠山区一模)如图在三角形纸片ABC中,已知∠ABC=90°,AC=5,BC=4,过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的点P处,折痕为MN,当点P在直线l上移动时,折痕的端点M、N也随之移动,若限定端点M、N分别在AB、BC边上移动,则线段AP长度的最大值与最小值的差为
7
-1
7
-1

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在三角形纸片ABC中,AB=6,BC=8,AC=4.沿虚线剪下的涂色部分的三角形与△ABC相似的是(  )
A、精英家教网B、精英家教网C、精英家教网D、精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•大兴区二模)在三角形纸片ABC中,已知∠ABC=90°,AB=6,BC=8.过点A作直线l平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线l上的T处,折痕为MN.当点T在直线l上移动时,折痕的端点M、N也随之移动.若限定端点M、N分别在AB、BC边上移动(点M可以与点A重合,点N可以与点C重合),求线段AT长度的最大值与最小值的和(计算结果不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,已知在三角形纸片ABC中,BC=3,AB=6,∠BCA=90°,在AC上取一点E,以BE为折痕翻折△ABC,使AB的一部分与BC重合,A与BC延长线上的点D重合,则线段AD的长度为(  )

查看答案和解析>>

同步练习册答案