精英家教网 > 初中数学 > 题目详情
如图,画钝角△ABC的高BE中,错误的个数有(  )
分析:根据三角形高线的定义分析判断即可.
解答:解:第一个图形BE是△ABC的高,
第二个图形BE不是△ABC的高,
第三个图形BE不是△ABC的高,
第四个图形BE不是△ABC的高,
所以,错误的个数是3.
故选C.
点评:本题考查了三角形的角平分线、中线、高线,熟记三角形的高线的定义是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图(1)△ABC为直角三角形,∠A=90°,BC=6;
如图(2)△ABC为锐角三角形,∠A=60°,BC=6;
如图(3)△ABC为钝角三角形,∠A=150°,BC=6;
操作:①分别画出能够覆盖上述三个三角形的最小圆;
②计算:分别求出上面画出的三个最小圆的半径.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•贵阳模拟)如果一个三角形和一个矩形满足下列条件:三角形的一边与矩形的一边完全重合,并且三角形的这条边所对的角的顶点落在矩形与三角形重合的边的对边上,则称这样的矩形为三角形的“友好矩形”. 如图①所示,矩形ABEF即为△ABC的“友好矩形”.我们发现:当△ABC是钝角三角形时,其“友好矩形”只有一个.
(1)仿照以上叙述,请你说明什么是一个三角形的“友好平行四边形”;
(2)如图②,若△ABC为直角三角形,且∠C=90°,在图②中画出△ABC的所有“友好矩形”;
(3)若△ABC是锐角三角形,且AB=5cm,AC=7cm,BC=8cm,在图③中画出△ABC的所有“友好矩形”,指出其中周长最大的矩形并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

操作探究:
我们知道一个三角形中有三条高线和三条中线.如图1,AD和AE分别是△ABC中BC边上的高线和中线,我们规定:kA=
DE
BE
,另外,对kB、kC作类似的规定.
(1)如图2,在△ABC中,∠C=90°,∠A=30°,则kA的值为
1
1
,kC的值为
1
2
1
2

(2)在每个小正方形边长均为1的4×4的方格纸上(如图3),画一个△ABC,使其顶点在格点(格点即每个小正方形的顶点)上,且kA=2,面积也为2;
(3)判断下面三个命题的真假(真命题打“√”,假命题的打“×”)
①若△ABC中,kA<1,则△ABC为锐角三角形
×
×

②若△ABC中,kA=1,则△ABC为直角三角形

③若△ABC中,kA>1,则△ABC为钝角三角形

查看答案和解析>>

科目:初中数学 来源: 题型:单选题

如图,画钝角△ABC的高BE中,错误的个数有
作业宝


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个

查看答案和解析>>

同步练习册答案