分析 根据△ACB和△ECD都是等腰直角三角形可得AC=BC,CD=CE,再由∠ACB=∠ECD=90°可得∠ACD=∠ECB,然后利用SAS定理证明△ACD≌△BCE.
解答 解:△ACD≌△BCE,
理由:∵△ACB和△ECD都是等腰直角三角形,
∴AC=BC,CD=CE,
∵∠ACB=∠ECD=90°,
∴∠ACD=∠ECB,
在△ACD和△BCE中$\left\{\begin{array}{l}{AC=BC}\\{∠ACD=∠BCE}\\{CD=CE}\end{array}\right.$,
∴△ACD≌△BCE(SAS).
点评 此题主要考查了全等三角形的判定,以及等腰直角三角形的性质,关键是正确找出证明三角形全等的条件.
科目:初中数学 来源: 题型:选择题
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | y=x2 | B. | y=$\frac{2}{x}$ | C. | y=$\frac{x}{2}$ | D. | y=$\frac{x+1}{2}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | 8,15,17 | B. | 0.9,1.2,1.5 | C. | $\sqrt{2}$,$\sqrt{3}$,$\sqrt{5}$ | D. | $\frac{1}{3}$,$\frac{1}{4}$,$\frac{1}{5}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
x | … | -1 | 0 | 1 | 2 | … |
y | … | -1 | $\frac{5}{4}$ | 2 | $\frac{5}{4}$ | … |
A. | y=x | B. | y=-$\frac{1}{x}$ | C. | y=$\frac{3}{4}$(x-1)2+2 | D. | y=-$\frac{3}{4}$(x-1)2+2 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com