分析 利用旋转的性质得BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,再判断出△BCC'是等边三角形,即可得到BC=C'C,进而判断出A'C是线段BC'的垂直平分线,最后用勾股定理即可.
解答 解:如图,
连接CC',∵△ABC绕点B逆时针旋转60°得到△A′BC′,
∴BC=BC′=6,∠CBC′=60°,A′B=AB=AC=A′C′=5,
∴△BCC'是等边三角形,
∴BC=C'C,
∵A'B=A'C',
∴A'C是BC'的垂直平分线,垂足为D,
∴BD=$\frac{1}{2}$BC'=3,
在Rt△A'BD中,A'B=5,BD=3,根据勾股定理得,A'D=4,
在Rt△BCD中,∠CBD=60°,BC=6,
∴CD=BC•cos∠CBD=6×cos60°=3$\sqrt{3}$,
∴A'C=A'D+CD=4+3$\sqrt{3}$
故答案为:4+3$\sqrt{3}$.
点评 本题考查了旋转的性质,主要考查了等边三角形的判定和性质,线段的垂直平分线的判定和性质,锐角三角函数,勾股定理,解本题的关键是判断出A'C是线段BC'的垂直平分线.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | S=S1 | B. | S1=S2+S3 | C. | S=S1+S2 | D. | S=S1+S2+S3 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com