15£®Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵÖУ¬µãAµÄ×ø±êΪ£¨-2£¬0£©£¬½«Ï߶ÎOAÈÆÔ­µãOÄæʱÕëÐýת60¡ã£¬µÃµ½Ï߶ÎOB£¬Å×ÎïÏßy=ax2+bx+c¾­¹ýA¡¢O¡¢BÈýµã£®
£¨1£©Çó´ËÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µãCÊÇxÖáÉÏ·½µÄÅ×ÎïÏßÉϵÄÒ»µã£¬ÇÒËıßÐÎABOC±»xÖá·Ö³ÉÃæ»ý±ÈΪ1£º2µÄÁ½²¿·Ö£¬ÇóµãCµÄ×ø±ê£»
£¨3£©ÈôµãDÊÇyÖáÕý°ëÖáÉϵĶ¯µã£¬¾­¹ýDµãÓëxÖáƽÐеÄÖ±ÏßlÓëÅ×ÎïÏß½»ÓÚM¡¢NÁ½µã£¨MµãÔÚNµãÓҲࣩ£¬ÊÇ·ñ´æÔÚÕâÑùµÄDµã£¬Ê¹µÃÒÔMNΪֱ¾¶µÄԲǡºÃ¾­¹ýÔ­µãO£¿Èô´æÔÚ£¬Çó³öDµã×ø±ê£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

·ÖÎö £¨1£©ÏÈÀûÓÃÐýתºÍÈý½Çº¯ÊýÇó³öBµÄ×ø±ê£¬ÔÙÔËÓôý¶¨ÏµÊý·¨¾Í¿ÉÒÔÇó³ö¶þ´Îº¯ÊýµÄ½âÎöʽ£»
£¨2£©ÓÉËıßÐÎABOC±»xÖá·Ö³ÉÃæ»ý±ÈΪ1£º2µÄÁ½²¿·Ö£¬¿ÉµÃS¡÷AOBÓëS¡÷AOCµÄ±ÈֵΪ1£º2»ò2£º1£¬¿ÉÇóCµã×Ý×ø±êΪ2$\sqrt{3}$»ò$\frac{\sqrt{3}}{2}$£¬ÔÙ´úÈëÅ×ÎïÏßÖеÃCµã×ø±ê¼´¿É£»
£¨3£©ÉèDµã×ø±êΪ£¨0£¬y£©£¬ÔòM¡¢NÁ½µã×ø±ê¿ÉÉèΪ£¨m£¬y£©£¬£¨n£¬y£©£¬µ±MNΪֱ¾¶µÄԲǡºÃ¾­¹ýÔ­µãO£¬Ôò¡ÏMON=90¡ã£¬¹ýM£¬N·Ö±ð×÷MF£¬NE´¹Ö±ÓÚxÖᣬÔò¡÷MOE¡×¡÷ONF£¬¸ù¾ÝÏàËÆÈý½ÇÐεÄÐÔÖʿɵÃy2=-m•n£¬ÒòΪM£¬NÁ½µã¹ØÓÚÅ×ÎïÏ߶ԳÆÖáx=-1¶Ô³Æ£¬¿ÉµÃm=-2-n£¬´úÈëÉÏʽµÃy2=£¨2+m£©n=n2+2n£¬ÓÖÓÉNµã×ø±ê´úÈëÅ×ÎïÏß½âÎöʽ¿ÉµÃy=$\sqrt{3}$n2+2$\sqrt{3}$n»¯Îª$\frac{\sqrt{3}}{3}$y=n2+2n£¬¿ÉµÃy2=$\frac{\sqrt{3}}{3}$y£¬½â·½³ÌÇóµÃDµã×ø±êΪ£¨0£¬$\frac{\sqrt{3}}{3}$£©£®

½â´ð ½â£º£¨1£©¡ßOB=OA=2ÇÒÐýת60¡ã£¬
ÀûÓÃÈý½Çº¯Êý¿ÉµÃB£¨-1£¬-$\sqrt{3}$£©£¬
ÉèÅ×ÎïÏߵĽâÎöʽy=ax2+bx£¬Ôò
$\left\{\begin{array}{l}{4a-2b=0}\\{a-b=-\sqrt{3}}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{a=\sqrt{3}}\\{b=2\sqrt{3}}\end{array}\right.$£®
¡àÅ×ÎïÏߵĽâÎöʽy=$\sqrt{3}$x2+2$\sqrt{3}$x£»

£¨2£©¡ßËıßÐÎABOC±»xÖá·Ö³ÉÃæ»ý±ÈΪ1£º2µÄÁ½²¿·Ö£¬
¡àS¡÷AOBÓëS¡÷AOCµÄ±ÈֵΪ1£º2»ò2£º1£¬
¡àCµã×Ý×ø±êΪ2$\sqrt{3}$»ò$\frac{\sqrt{3}}{2}$£¬
´úÈëÅ×ÎïÏßÖеÃCµã×ø±êΪ£¨-1+$\sqrt{3}$£¬2$\sqrt{3}$£©£¬£¨-1-$\sqrt{3}$£¬2$\sqrt{3}$£©£¬£¨-1+$\frac{\sqrt{6}}{2}$£¬$\frac{\sqrt{3}}{2}$£©£¬£¨-1-$\frac{\sqrt{6}}{2}$£¬$\frac{\sqrt{3}}{2}$£©£»

£¨3£©ÉèDµã×ø±êΪ£¨0£¬y£©£¬ÔòM¡¢NÁ½µã×ø±ê¿ÉÉèΪ£¨m£¬y£©£¬£¨n£¬y£©£¬
µ±MNΪֱ¾¶µÄԲǡºÃ¾­¹ýÔ­µãO£¬Ôò¡ÏMON=90¡ã£¬
¹ýM£¬N·Ö±ð×÷MF£¬NE´¹Ö±ÓÚxÖᣬ
Ôò¡÷MOE¡×¡÷ONF£¬
¡à$\frac{ME}{OF}$=$\frac{OE}{NF}$£¬¼´$\frac{y}{-n}$=$\frac{m}{y}$£¬
¡ày2=-m•n£¬
ÓÖ¡ßM£¬NÁ½µã¹ØÓÚÅ×ÎïÏ߶ԳÆÖáx=-1¶Ô³Æ£¬
¡àm+n=-2£¬µÃm=-2-n£¬
´úÈëÉÏʽµÃy2=£¨2+m£©n=n2+2n£¬
ÓÖ¡ßNµã×ø±ê´úÈëÅ×ÎïÏß½âÎöʽ¿ÉµÃy=$\sqrt{3}$n2+2$\sqrt{3}$n»¯Îª$\frac{\sqrt{3}}{3}$y=n2+2n£¬
¡ày2=$\frac{\sqrt{3}}{3}$y£¬
½âµÃy1=0£¬y2=$\frac{\sqrt{3}}{3}$£¬
¡àDµã×ø±êΪ£¨0£¬$\frac{\sqrt{3}}{3}$£©£®

µãÆÀ ±¾Ì⿼²éÁ˶þ´Îº¯Êý×ÛºÏÌ⣬ÏàËÆÈý½ÇÐεÄÅж¨¼°ÐÔÖʵÄÔËÓ㬴ý¶¨ÏµÊý·¨Çóº¯ÊýµÄ½âÎöʽµÄÔËÓã¬Èý½ÇÐεÄÃæ»ý¹«Ê½µÄÔËÓ㬽â´ð±¾Ìâʱ£¬Çó³ö¶þ´Îº¯ÊýµÄ½âÎöʽÊǹؼü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¼ÆË㣺-8-£¨+4£©=-12£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

6£®Èçͼ£¬ËıßÐÎABCDΪƽÐÐËıßÐΣ¬¡ÏBADµÄ½Çƽ·ÖÏßAE½»CDÓÚµãF£¬½»BCµÄÑÓ³¤ÏßÓÚµãE£®ÈôµãFÊÇAEµÄÖе㣬ÇóÖ¤£ºBF¡ÍAF£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖª£ºËıßÐÎABCDÈçͼËùʾ£®
£¨1£©Ìî¿Õ¡ÏA+¡ÏB+¡ÏC+¡ÏD=360¡ã
£¨2£©ÇëÓÃÁ½ÖÖ·½·¨Ö¤Ã÷ÄãµÄ½áÂÛ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÅ×ÎïÏßy=x2-2kx+k-1
£¨1£©ÇóÖ¤£º²»ÂÛkÈ¡ºÎֵʱ£¬Å×ÎïÏßÓëxÖá±ØÓÐÁ½¸ö½»µã£»
£¨2£©ÉèÅ×ÎïÏßÓëxÖáµÄÁ½¸ö½»µã·Ö±ðΪ£¨x1£¬0£©¡¢£¨x2£¬0£©£¬Çóx12+x22µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏBCA=90¡ã£¬CDÊÇAB±ßÉϵÄÖÐÏߣ¬·Ö±ð¹ýµãC£¬D×÷BAºÍBCµÄƽÐÐÏߣ¬Á½Ïß½»ÓÚµãE£¬ÇÒDE½»ACÓÚµãO£¬Á¬½ÓAE£®
ÇóÖ¤£ºËıßÐÎADCEÊÇÁâÐΣ®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®Èçͼ£¬ÒÑÖªÖ±Ïßy=-x+3ÓëxÖá¡¢yÖá·Ö±ð½»ÓÚA£¬BÁ½µã£¬Å×ÎïÏßy=-x2+bx+c¾­¹ýA£¬BÁ½µã£¬µãPÔÚÏ߶ÎOAÉÏ£¬´ÓµãO³ö·¢£¬ÏòµãAÒÔ1¸öµ¥Î»/ÃëµÄËÙ¶ÈÔÈËÙÔ˶¯£»Í¬Ê±£¬µãQÔÚÏ߶ÎABÉÏ£¬´ÓµãA³ö·¢£¬ÏòµãBÒÔ$\sqrt{2}$¸öµ¥Î»/ÃëµÄËÙ¶ÈÔÈËÙÔ˶¯£¬Á¬½ÓPQ£¬ÉèÔ˶¯Ê±¼äΪtÃ룮
£¨1£©ÇóÅ×ÎïÏߵĽâÎöʽ£»
£¨2£©µ±tΪºÎֵʱ£¬¡÷APQΪֱ½ÇÈý½ÇÐΣ»
£¨3£©¹ýµãP×÷PE¡ÎyÖᣬ½»ABÓÚµãE£¬¹ýµãQ×÷QF¡ÎyÖᣬ½»Å×ÎïÏßÓÚµãF£¬Á¬½ÓEF£¬µ±EF¡ÎPQʱ£¬ÇóµãFµÄ×ø±ê£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÒÑÖª1΢Ã×=10-7Ã×£¬Ôò25΢Ã×ÓÿÆѧ¼ÇÊý·¨±íʾΪ£¨¡¡¡¡£©
A£®0.25¡Á10-5Ã×B£®25¡Á10-7Ã×C£®2.5¡Á10-6Ã×D£®2.5¡Á10-8Ã×

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®Èçͼ£¬ABÊÇ¡ÑOµÄÖ±¾¶£¬BTÊÇ¡ÑOµÄÇÐÏߣ¬Èô¡ÏATB=45¡ã£¬AB=2£¬ÔòÒõÓ°²¿·ÖµÄÃæ»ýÊÇ£¨¡¡¡¡£©
A£®2B£®$\frac{3}{2}$-$\frac{1}{4}$¦ÐC£®1D£®$\frac{1}{2}$+$\frac{1}{4}$¦Ð

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸