精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系中,点O是原点,矩形OABC的顶点A在x轴的正半轴上,顶点C在y的正半轴上,点B的坐标是(5,3),抛物线经过A、C两点,与x轴的另一个交点是点D,连接BD.

(1)求抛物线的解析式;
(2)点M是抛物线对称轴上的一点,以M、B、D为顶点的三角形的面积是6,求点M的坐标;
(3)点P从点D出发,以每秒1个单位长度的速度沿D→B匀速运动,同时点Q从点B出发,以每秒1个单位长度的速度沿B→A→D匀速运动,当点P到达点B时,P、Q同时停止运动,设运动的时间为t秒,当t为何值时,以D、P、Q为顶点的三角形是等腰三角形?请直接写出所有符合条件的值.
解:(1)∵矩形ABCD,B(5,3),∴A(5,0),C(0,3)。
∵点A(5,0),C(0,3)在抛物线上,
,解得:
∴抛物线的解析式为:
(2)∵
∴抛物线的对称轴为直线x=3。
如答图1所示,设对称轴与BD交于点G,与x轴交于点H,则H(3,0)。

令y=0,即,解得x=1或x=5。
∴D(1,0)。∴DH=2,AH=2,AD=4。
,∴GH=DH•tan∠ADB=2×=
∴G(3,)。
∵SMBD=6,即SMDG+SMBG=6,∴MG•DH+MG•AH=6,即: MG×2+MG×2=6。
解得:MG=3。
∴点M的坐标为(3,)或(3,)。
(3)在Rt△ABD中,AB=3,AD=4,则BD=5,∴sinB=,cosB=
以D、P、Q为顶点的三角形是等腰三角形,则:
①若PD=PQ,如答图2所示,

此时有PD=PQ=BQ=t,过点Q作QE⊥BD于点E,
则BE=PE,BE=BQ•cosB=t,QE=BQ•sinB=t,
∴DE=t+t=t。
由勾股定理得:DQ2=DE2+QE2=AD2+AQ2
即(t)2+(t)2=42+(3﹣t)2,整理得:11t2+6t﹣25=0,
解得:t=或t=﹣5(舍去)。
∴t=
②若PD=DQ,如答图3所示,

此时PD=t,DQ=AB+AD﹣t=7﹣t,
∴t=7﹣t。∴t=
③若PQ=DQ,如答图4所示,

∵PD=t,∴BP=5﹣t。
∵DQ=7﹣t,∴PQ=7﹣t,AQ=4﹣(7﹣t)=t﹣3。
过点P作PF⊥AB于点F,
则PF=PB•sinB=(5﹣t)×=4﹣t,BF=PB•cosB=(5﹣t)×=3﹣t。
∴AF=AB﹣BF=3﹣(3﹣t)=t。
过点P作PE⊥AD于点E,则PEAF为矩形,
∴PE=AF=t,AE=PF=4﹣t。∴EQ=AQ﹣AE=(t﹣3)﹣(4﹣t)=t﹣7。
在Rt△PQE中,由勾股定理得:EQ2+PE2=PQ2,即:(t﹣7)2+(t)2=(7﹣t)2
整理得:13t2﹣56t=0,解得:t=0(舍去)或t=
∴t=
综上所述,当t=或t=或t=时,以D、P、Q为顶点的三角形是等腰三角形。

试题分析:(1)求出点A、C的坐标,利用待定系数法求出抛物线的解析式。
(2)如答图1所示,关键是求出MG的长度,利用面积公式解决;注意,符合条件的点M有2个,不要漏解。
(3)△DPQ为等腰三角形,可能有三种情形,需要分类讨论:
①若PD=PQ,如答图2所示;②若PD=DQ,如答图3所示;③若PQ=DQ,如答图4所示。
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

(1)已知二次函数y=ax2+bx+c(a≠0)的图象过A(2,0)、B(12,0),且y的最大值为50,求这个二次函数的解析式;
(2)抛物线顶点P(2,1),且过A(-1,10),求抛物线的解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

先阅读以下材料,然后解答问题:
材料:将二次函数的图象向左平移1个单位,再向下平移2个单位,求平移后的抛物线的解析式(平移后抛物线的形状不变)。
解:在抛物线上任取两点A(0,3)、B(1,4),由题意知:点A向左平移1个单位得到,3),再向下平移2个单位得到,1);点B向左平移1个单位得到(0,4),再向下平移2个单位得到(0,2)。
设平移后的抛物线的解析式为
则点,1),(0,2)在抛物线上。
可得:,解得:
所以平移后的抛物线的解析式为:
根据以上信息解答下列问题:
将直线向右平移3个单位,再向上平移1个单位,求平移后的直线的解析式。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线与抛物线相交于A,B两点,且点A(1,-4)为抛物线的顶点,点B在x轴上。

(1)求抛物线的解析式;
(2)在(1)中抛物线的第二象限图象上是否存在一点P,使△POB与△POC全等?若存在,求出点P的坐标;若不存在,请说明理由;
(3)若点Q是y轴上一点,且△ABQ为直角三角形,求点Q的坐标。

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知△ABC中,边BC的长与BC边上的高的和为20.
(1)写出△ABC的面积y与BC的长x之间的函数关系式,并求出面积为48时BC的长;
(2)当BC多长时,△ABC的面积最大?最大面积是多少?
(3)当△ABC面积最大时,是否存在其周长最小的情形?如果存在,请说出理由,并求出其最小周长;如果不存在,请给予说明.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

某公司销售一种进价为20元/个的计算机,其销售量y(万个)与销售价格x(元/个)的变化如下表:
价格x(元/个)

30
40
50
60

销售量y(万个)

5
4
3
2

同时,销售过程中的其他开支(不含造价)总计40万元.
(1)观察并分析表中的y与x之间的对应关系,用所学过的一次函数,反比例函数或二次函数的有关知识写出y(万个)与x(元/个)的函数解析式.
(2)求出该公司销售这种计算器的净得利润z(万个)与销售价格x(元/个)的函数解析式,销售价格定为多少元时净得利润最大,最大值是多少?
(3)该公司要求净得利润不能低于40万元,请写出销售价格x(元/个)的取值范围,若还需考虑销售量尽可能大,销售价格应定为多少元?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知以E(3,0)为圆心,以5为半径的⊙E与x轴交于A,B两点,与y轴交于C点,抛物线经过A,B,C三点,顶点为F.

(1)求A,B,C三点的坐标;
(2)求抛物线的解析式及顶点F的坐标;
(3)已知M为抛物线上一动点(不与C点重合),试探究:
①使得以A,B,M为顶点的三角形面积与△ABC的面积相等,求所有符合条件的点M的坐标;
②若探究①中的M点位于第四象限,连接M点与抛物线顶点F,试判断直线MF与⊙E的位置关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知直线y=3x﹣3分别交x轴、y轴于A、B两点,抛物线y=x2+bx+c经过A、B两点,点C是抛物线与x轴的另一个交点(与A点不重合).

(1)求抛物线的解析式;
(2)求△ABC的面积;
(3)在抛物线的对称轴上,是否存在点M,使△ABM为等腰三角形?若不存在,请说明理由;若存在,求出点M的坐标.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

二次函数的图象如图所示,则一次函数与反比例函数在同一平面直角坐标系中的大致图象为【   】
 
A.B.C.D.

查看答案和解析>>

同步练习册答案