精英家教网 > 初中数学 > 题目详情
20.在准备“综合与实践”活动课时,小明关注了佛山移动公司手机资费两种套餐:
A套餐:月租0元,市话通话费每分钟0.49元;
B套餐:月租费48元,免费市话通话时间48分钟,超出部分每分钟0.25元.
设A套餐每月市话话费为y 1(元),B套餐每月市话话费为y2(元),月市话通话时间为x分钟.(x>48)
(1)分别写出y1、y2与x的函数关系式.
(2)月市话通话时间为多长时,两种套餐收费一样?
(3)小明爸爸每月市话通话时间为200分钟,请说明选择哪种套餐更合算?

分析 (1)因为佛山移动公司手机资费两种套餐:A套餐:月租0元,市话通话费每分钟0.49元;B套餐:月租费48元,免费市话通话时间48分钟,超出部分每分钟0.25元,两种方式的费用分别为y1元和y2元,则y1=0.49x,y2=48+0.25x;
(2)令y1=y2,解方程即可;
(3)根据(2)的结果即可求解.

解答 解:(1)y1=0.49x,
y2=48+0.25x;

(2)令y1=y2,则0.49x=48+0.25x,
解得x=200.
故月市话通话时间为200分钟长时,两种套餐收费一样;

(3)∵月市话通话时间为200分钟长时,两种套餐收费一样,
∴小明爸爸每月市话通话时间为200分钟,选择两种套餐一样合算.

点评 此题主要考查了一次函数的应用,需仔细分析题意,建立函数解析式,利用方程或简单计算即可解决问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

10.先化简,再求值:($\frac{{x}^{2}}{x-1}$+$\frac{9}{1-x}$)÷$\frac{x+3}{x-1}$,x在1,2,-3中选取合适的数代入求值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.已知关于x的方程(k2-1)x2+(2k+1)x+1=0.
(1)若方程有实数根,求k的取值范围;
(2)若方程有两个互为相反数的实数根,求k的值,并求此时方程的根.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,BC∥B1C1,CD∥C1D1,DE∥D1E1,∠BCD=118°,∠CDE=119°,求∠B1C1D1及∠C1D1E1的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.如图,已知∠A=36°,线段AB=6.
(1)尺规作图:求作菱形ABCD,使线段AB是菱形的边,顶点C在射线AP上;
(2)求(1)中菱形对角线AC的长.
(精确到0.1,参考数据:sin36°≈0.5878,cos36°≈0.8090,tan36°≈0.7265)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.问题提出:(1)如图1,在正方形ABCD中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠DCP的平分线上一点.若∠AMN=90°,求证:AM=MN.
下面给出一种证明的思路,你可以按这一思路证明,也可以选择另外的方法证明.
证明:在边AB上截取AE=MC,连接ME.正方形ABCD中,∠B=∠BCD=90°,AB=BC.
∴∠NMC=180°-∠AMN-∠AMB=180°-∠B-∠AMB=∠MAB=∠MAE,即∠NMC=∠MAE.
(下面请你完成余下的证明过程)
问题探究:(2)若将(1)中的“正方形ABCD”改为“正三角形ABC”(如图2),N是∠ACP的平分线上一点,则∠AMN=60°时,结论AM=MN是否还成立?请说明理由.
解决问题:(3)若将(1)中的“正方形ABCD”改为“正n边形ABCD…X,请你作出猜想:当∠AMN=$\frac{(n-2)180°}{n}$时,结论AM=MN仍然成立.(直接写出答案,不需要证明)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.解方程:
(1)2(x-1)+1=0;
(2)$\frac{1}{3}$x-1=$\frac{x-3}{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.计算:-$\root{3}{-8}$+$\root{3}{125}$-$\root{3}{-1}$-$\sqrt{(-2)^{2}}$+$\root{3}{(-3)^{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.“三角” 表示3xyz,“方框”表示-4abdc.求× 的值.

查看答案和解析>>

同步练习册答案