【题目】如图,一次函数y=mx+n(m≠0)的图象与反比例函数y=(k≠0)的图象交于第一、三象限内的A,B两点,与y轴交于点C,过点B作BM⊥x轴,垂足为点M,BM=OM=2,点A的纵坐标为4.
(1)求该反比例函数和一次函数的表达式;
(2)直线AB交x轴于点D,过点D作直线l⊥x轴,如果直线l上存在点P,坐标平面内存在点Q.使四边形OPAQ是矩形,求出点P的坐标.
【答案】(1)y= ,y=2x+2;(2)存在,(﹣1,)或(﹣1,2+)或(﹣1,2﹣).
【解析】
(1)根据题意得出B点坐标,进而得出反比例函数解析式,再利用待定系数法得出一次函数解析式;
(2)设P(-1,a),如图1,当∠PAO=90°,如图2,当∠APO=90°,根据勾股定理列方程即可得到结论.
解:(1)∵BM=OM=2,
∴点B的坐标为(﹣2,﹣2),
设反比例函数的解析式为y= ,
则﹣2=,
得k=4,
∴反比例函数的解析式为y= ,
∵点A的纵坐标是4,
∴4=,
得x=1,
∴点A的坐标为(1,4),
∵一次函数y=mx+n(m≠0)的图象过点A(1,4)、点B(﹣2,﹣2),
∴ ,
解得: ,
即一次函数的解析式为y=2x+2;
(2)存在,
∵直线AB于x轴交于D,
∴D(﹣1,0),
∴OD=1,
设P(﹣1,a),
如图1,当∠PAO=90°,
∵OP2=PA2+OA2=PD2+OD2,
∴(1+1)2+(4﹣a)2+12+42=12+a2,
解得:a= ,
∴P(﹣1, ),
如图2,当∠APO=90°,
∵OP2=OA2﹣PA2=PD2+OD2,
∴12+42﹣[(1+1)2+(4﹣a)2]=12+a2,
解得:a=2± ,
∴P(﹣1,2+)或(﹣1,2﹣),
综上所述,点P的坐标为(﹣1,)或(﹣1,2+)或(﹣1,2﹣).
故答案为:(1)y= ,y=2x+2;(2)存在,(﹣1,)或(﹣1,2+)或(﹣1,2﹣).
科目:初中数学 来源: 题型:
【题目】如图,一次函数y=kx+b的图象与反比例函数(x>0)的图象交于A(2,﹣1),B(,n)两点,直线y=2与y轴交于点C.
(1)求一次函数与反比例函数的解析式;
(2)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题探究
(1)如图①,在正方形ABCD内,请画出使∠BPC=90°的所有点P;
(2)如图②,已知矩形ABCD,AB=9,BC=10,在矩形ABCD内(含边)画出使∠BPC=60°的所有点P,并求出△APD面积的最大值;
(3)随着社会发展,农业观光园走进了我们的生活,某农业观光园的平面示意图如图3所示的四边形ABCD,其中∠A=120°,∠B=∠C=90°,AB=km,BC=6km,观光园的设计者想在园中找一点P,使得点P与点A、B、C、D所连接的线段将整个观光园分成四个区域,用来进行不同的设计与规划,从实用和美观的角度他们还要求在△BPC的区域内∠BPC=120°,且△APD的区域面积最小,试问在四边形ABCD内是否存在这样的点P,使得∠BPC=120°,且△APD面积最小?若存在,请你在图中画出点P点的位置,并求出△APD的最小面积.若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象经过点(2,-5),顶点坐标为(-1,4),直线l的解析式为y=2x+m.
(1)求抛物线的解析式;
(2)若抛物线与直线l有两个公共点,求的取值范围;
(3)若直线l与抛物线只有一个公共点P,求点P的坐标;
(4)设抛物线与轴的交点分别为A、B,求在(3)的条件下△PAB的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,△ABC的顶点都在小方格的格点上.
(1)点A的坐标是 ;点C的坐标是 ;
(2)以原点O为位似中心,将△ABC缩小,使变换后得到的△A1B1C1与△ABC对应边的比为1:2,请在网格中画出△A1B1C1;
(3)△A1B1C1的面积为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】元旦期间,某宾馆有50个房间供游客居住,当每个房间每天的定价为180元时,房间会全部住满;当每个房间每天的定价每增加10元时,就会有一个房间空闲.如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用.
(1)若房价定为200元时,求宾馆每天的利润;
(2)房价定为多少时,宾馆每天的利润最大?最大利润是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,反比例函数y= 的图象与一次函数y=x+b的图象交
于点A(1,4)、点B(-4,n).
(1)求一次函数和反比例函数的解析式;
(2)求△OAB的面积;
(3)直接写出一次函数值大于反比例函数值的自变量x的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】感知:如图①,在四边形ABCD中,AB∥CD,∠B=90°,点P在BC边上,当∠APD=90°时,可知△ABP∽△PCD.(不要求证明)
探究:如图②,在四边形ABCD中,点P在BC边上,当∠B=∠C=∠APD时,求证:△ABP∽△PCD.
拓展:如图③,在△ABC中,点P是边BC的中点,点D、E分别在边AB、AC上.若∠B=∠C=∠DPE=45°,BC=6,CE=4,则DE的长为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某宾馆有50个房间供游客居住,当每个房间定价120元时,房间会全部住满,当每个房间每天的定价每增加10元时,就会有一个房间空闲,如果游客居住房间,宾馆需对每个房间每天支出20元的各种费用,设每个房间定价为x元(x为整数).
(1)直接写出每天游客居住的房间数量y与x的函数解析式.
(2)设宾馆每天的利润为W元,当每间房价定价为多少元时,宾馆每天所获利润最大,最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com