精英家教网 > 初中数学 > 题目详情
1.某中学校园内有一块长30m,宽22m的草坪,中间有两条宽2m的小路,把草坪分成了4块,如图所示,则草坪的面积560m2

分析 直接利用平移的性质得出草坪的面积为:(30-2)×(22-2),即可得出答案.

解答 解:∵学校园内有一块长30m,宽22m的草坪,中间有两条宽2m的小路,把草坪分成了4块,
∴草坪的面积为:(30-2)×(22-2)=560(m2).
故答案为:560m2

点评 此题主要考查了生活中的平移,正确表示出草坪面积是解题关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

9.已知:如图,AB∥CD,AP平分∠BAC,CP平分∠ACD,求∠APC的度数.
解:过P点作PM∥AB交AC于点M.
∵AB∥CD,(已知)
∴∠BAC+∠ACD=180°. (两直线平行,同旁内角互补)
∵PM∥AB,
∴∠1=∠2,(两直线平行,内错角相等)
且PM∥DC.(平行于同一直线的两直线也互相平行)
∴∠3=∠4. (两直线平行,内错角相等)
∵AP平分∠BAC,CP平分∠ACD,(已知)
∴∠1=$\frac{1}{2}$∠BAC,∠4=$\frac{1}{2}$ACD.
∴∠1+∠4=$\frac{1}{2}$∠BAC+$\frac{1}{2}$∠ACD=90°.
∴∠APC=∠2+∠3=∠1+∠4=90°.
总结:两直线平行时,同旁内角的角平分线互相垂直.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图所示,已知△ABC是等腰直角三角形,∠ABC=90°,AB=10,D为△ABC外的一点,连结AD、BD,过D作DH⊥AB,垂足为H,DH的延长线交AC于E.
(1)如图1,若BD=AB,且$\frac{HB}{HD}$=$\frac{3}{4}$,求AD的长;
(2)如图2,若△ABD是等边三角形,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

9.如图,长方形网格由小正方形构成,每一个小正方形的边长都为1,点A和点B是小正方形的格点,请你在图中画出从A到B的最短路程,则点A和点B之间的这个最短路程值为5.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.在△ABC中,AB=10,AC=10,BC=8,则△ABC是等腰三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.已知ax=5,ax+y=25,则ax+ay的值10.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.已知四边形ABCD和四边形CEFG都是正方形,且AB>CE,连接BG、DE.
求证:(1)BG=DE;(2)BG⊥DE.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

10.如图,分别过反比例函数y=$\frac{3}{x}$图象上的点P1(1,y1),P2(2,y2),…,Pn(n,yn)作x轴的垂线,垂足分别为A1,A2,…,An,连接A1P2,A2P3,…,AnPn+1,…,以A1P1,A1P2为一组邻边作平行四边形A1P1B1P2,其面积为S1,以A2P2,A2P3为一组邻边作平行四边形A2P2B2P3,其面积为S2,…,以AnPn,AnPn+1为一组邻边作平行四边形AnPnBnPn+1,其面积为Sn,若S1+S2+…+Sn>8,则n的最小值为(  )
A.9B.8C.7D.6

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

11.点B(a,5)在第二象限,点C在y轴上移动,以BC为斜边作等腰直角△BCD,我们发现直角顶点D点随着C点的移动也在一条直线上移动,这条直线的函数表达式是y=-x+5或y=x+5.

查看答案和解析>>

同步练习册答案