精英家教网 > 初中数学 > 题目详情
已知,如图①所示,在△ABC和△ADE中,AB=AC,AD=AE,∠BAC=∠DAE,且点B、A、D在一条直线上,连接BE、CD.
(1)求证:BE=CD;
(2)若M、N分别是BE和CD的中点,将△ADE绕点A按顺时针旋转,如图②所示,试证明在旋转过程中,△AMN是等腰三角形;
(3)试证明△AMN与△ABC和△ADE都相似.
分析:(1)因为∠BAC=∠DAE,所以∠BAE=∠CAD,又因为AB=AC,AD=AE,利用SAS可证出△ABE≌△ACD,进而可得BE=CD;
(2)由(1)中△ABE≌△ACD,可得对应边、对应角相等,进而得出△ABM≌△ACN,即可得出结论;
(3)先由(2)中△ABM≌△ACN,可得∠BAM=∠CAN,所以∠MAN=∠BAC,又因为AM:AB=AN:AC,利用两组对应边的比相等且相应的夹角相等的两个三角形相似,证出△AMN∽△ABC;同理证出△ABC∽△ADE,即可得出△AMN∽△ABC∽△ADE.
解答:证明:(1)∵∠BAC=∠DAE,
∴∠BAC+∠CAE=∠DAE+∠CAE,
即∠BAE=∠CAD.
在△ABE与△ACD中,
AB=AC
∠BAE=∠CAD
AE=AD

∴△ABE≌△ACD,
∴BE=CD;

(2)由(1)得△ABE≌△ACD,
∴∠ABE=∠ACD,BE=CD.
∵M,N分别是BE,CD的中点,
∴BM=CN.
在△ABM与△ACN中,
AB=AC
∠ABM=∠ACN
BM=CN

∴△ABM≌△ACN,
∴AM=AN,
∴△AMN为等腰三角形;

(3)由(2)得△ABM≌△ACN,
∴∠BAM=∠CAN,
∴∠BAM+∠BAN=∠CAN+∠BAN,
即∠MAN=∠BAC,
又∵AM=AN,AB=AC,
∴AM:AB=AN:AC,
∴△AMN∽△ABC;
∵AB=AC,AD=AE,
∴AB:AD=AC:AE,
又∵∠BAC=∠DAE,
∴△ABC∽△ADE;
∴△AMN∽△ABC∽△ADE.
点评:本题主要考查了全等三角形的判定与性质,等腰三角形的判定,旋转的性质,相似三角形的判定,综合性较强,难度中等.熟练掌握全等三角形及相似三角形的判定方法是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知,如图1所示,直线PA与x轴交于点A,与y轴交于点C(0,2),且S△AOC=4,直线BD与x轴交于点B,与y轴交于点D,直线PA与直线BD交于点P(2,m),点P在第一象限,连接OP.
(1)求点A的坐标;
(2)求直线PA的函数表达式;
(3)求m的值;
(4)若S△BOP=S△DOP,请你直接写出直线BD的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

26、已知:如图1所示,Rt△ABC与Rt△ADE中,∠ACB=∠AED=90°,AC=kBC,AE=kDE,点O为线段BD的中点.探索∠COE、∠ADE之间有怎样的数量关系,证明你的结论.
说明:如果你反复探索没有解决问题,可以选取(1)和(2)中的条件,选(1)中的条件完成解答满分为7分;选(2)中的条件完成解答满分为4分.
(1)点E在CA延长线上(如图2);
(2)k=1,点E在CA延长线上(如图3).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知,如图1所示,直线PA与x轴交于点A,与y轴交于点C(0,2),且S△AOC=4,直线BD与x轴交于点B,与y轴交于点D,直线PA与直线BD交于点P(2,m),点P在第一象限,连接OP.
(1)求点A的坐标;
(2)求直线PA的函数表达式;
(3)求m的值;
(4)若S△BOP=S△DOP,请你直接写出直线BD的函数表达式.

查看答案和解析>>

科目:初中数学 来源:2010年河北省石家庄市中考数学一模试卷(解析版) 题型:解答题

已知,如图1所示,直线PA与x轴交于点A,与y轴交于点C(0,2),且S△AOC=4,直线BD与x轴交于点B,与y轴交于点D,直线PA与直线BD交于点P(2,m),点P在第一象限,连接OP.
(1)求点A的坐标;
(2)求直线PA的函数表达式;
(3)求m的值;
(4)若S△BOP=S△DOP,请你直接写出直线BD的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:如图1所示,Rt△ABC与Rt△ADE中,∠ACB=∠AED=90°,AC=kBC,AE=kDE,点O为线段BD的中点.探索∠COE、∠ADE之间有怎样的数量关系,证明你的结论.
(1)点E在CA延长线上(如图2);
(2)k=1,点E在CA延长线上(如图3).

查看答案和解析>>

同步练习册答案