精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,直线lyx+1x轴于点A,交y轴于点A1A2A3在直线l上,点B1B2B3x轴的正半轴上,若A1OB1A2B1B2A3B2B3,依次均为等腰直角三角形,直角顶点都在x轴上,则第n个等腰直角三角形AnBn1Bn,顶点Bn的坐标为_____

【答案】Bn(2n10)

【解析】

根据题意分别求出B110),B230),B370),由点的坐标规律可得Bn2n10).

解:直线yx+1x轴、y轴的交点分别为(﹣10),(01),

∴OA11

∵△A1OB1△A2B1B2△A3B2B3,依次均为等腰直角三角形,

∴B110),

∴A212),

∴A2B12

∴B230),

∴A334),

∴A3B24

∴B370),

……

Bn2n10),

故答案为Bn2n10).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】在等腰RtABC中,∠BAC90°,ABAC,点PAC上一点,MBC上一点.

1)若AMBP于点E

如图1BP为△ABC的角平分线,求证:PAPM

如图2BP为△ABC的中线,求证:BPAM+MP

2)如图3,若点NAB上,ANCPAMPN,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某市郊外景区内一条笔直的公路l经过A、B两个景点,景区管委会又开发了风景优美的景点C.经测量,C位于A的北偏东60°的方向上,C位于B的北偏东30°的方向上,且AB=10km.

(1)求景点BC的距离;

(2)为了方便游客到景点C游玩,景区管委会准备由景点C向公路l修一条距离最短的公路,不考虑其他因素,求出这条最短公路的长.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(﹣15),B(﹣10),C(﹣43).

1)在图中的点上标出相应字母ABC,并求出ABC的面积;

2)在图中作出ABC关于y轴的对称图形A1B1C1

3)写出点A1B1C1的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(情境)某课外兴趣小组在一次折纸活动课中.折叠一张带有条格的长方形的纸片ABCD(如图1),将点B分别与点A,A1,A2,…,D重合,然后用笔分别描出每条折痕与对应条格线所在的直线的交点,用平滑的曲线顺次连结各交点,得到一条曲线.

图1 图2 图3

(探索)(1)如图2,在平面直角坐标系xOy中,将矩形纸片ABCD的顶点B与原点O重合,BC边放在x轴的正半轴上,AB边放在y轴的正半轴上,AB=m,AD=n,(m≤n).将纸片折叠,使点B落在边AD上的点E处,过点E作EQ⊥BC于点Q,折痕MN所在直线与直线EQ相交于点P,连结OP.求证:四边形OMEP是菱形;

(归纳)(2)设点P坐标是(x,y),求y与x的函数关系式(用含m的代数式表示).

(运用)(3)将矩形纸片ABCD如图3放置,AB=8,AD=12,将纸片折叠,当点B与点D重合时,折痕与DC的延长线交于点F.试问在这条折叠曲线上是否存在点K,使得△KCF的面积是△KOC面积的?若存在,写出点K的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算下列各式:

1   

2   

3   

4   

5   

6)猜想   .(用含n的代数式表示)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtACB中,∠ACB=90°,ABC的角平分线AD、BE相交于点P,过PPFADBC的延长线于点F,交AC于点H,则下列结论:①∠APB=135°;BF=BA;PH=PD;④连接CP,CP平分∠ACB,其中正确的是(  )

A. ①②③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:

20

21

19

16

27

18

31

29

21

22

25

20

19

22

35

33

19

17

18

29

18

35

22

15

18

18

31

31

19

22

整理上面数据,得到条形统计图:

样本数据的平均数、众数、中位数如下表所示:

统计量

平均数

众数

中位数

数值

23

m

21

根据以上信息,解答下列问题:

(1)上表中众数m的值为   

(2)为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据   来确定奖励标准比较合适.(填平均数”、“众数中位数”)

(3)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,从点A(0,4)出发的一束光,经x轴反射,过点C(6,4),求这束光从点A到点C所经过的路径长度.

查看答案和解析>>

同步练习册答案