【题目】利用平方根、立方根来解下列方程.
(1)(2x-1)2-169=0; (2)4(3x+1)2-1=0;
(3)x3-2=0; (4)(x+3)3=4.
【答案】(1)x=7或x=-6;(2)x=-或x=-;(3)x=;(4)x=-1.
【解析】试题分析:(1)方程整理后,利用平方根定义开方即可求出解;
(2)方程整理后,利用平方根定义开方即可求出解;
(3)方程整理后,利用立方根定义开立方即可求出解;
(4)方程整理后,利用立方根定义开立方即可求出解.
试题解析:(1)方程整理得:(2x1)2=169,
开方得:2x1=13或2x1=13,
解得:x=7或x=-6;
(2)方程整理得:(3x+1)2=,
开方得:3x+1=±,
解得:x=-或x=-;
(3)方程整理得:x3=,
开立方得:x=;
(4)方程整理得:(x+3)3=8,
开立方得:x+3=2,
解得:x=2.
科目:初中数学 来源: 题型:
【题目】抛物线与x轴交于A,B两点(A在B的左侧),与y轴交于点C(0,-3),点D与点C关于抛物线的对称轴对称.
(1)求抛物线的解析式及点D的坐标;
(2)点P是抛物线对称轴上的一动点,当△PAC的周长最小时,求出点P的坐标;
(3)若点Q在x轴正半轴上,且∠ADQ=∠DAC,求出点Q的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了了解浮桥和平小区家庭月均用水情况,随机调查了该小区部分家庭,并将调查数据整理如下表(部分):
月均用 水量x/m3 | 0<x ≤5 | 5<x ≤10 | 10<x ≤15 | 15<x ≤20 | x>20 |
频数/户 | 12 | 20 | 3 | ||
频率 | 0.12 | 0.07 |
若和平小区有1600户家庭,请你据此估计该小区月均用水量不超过10m3的家庭约有多少户.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读下列材料:
实验数据显示,一般成人喝250毫升低度白酒后,其血液中酒精含量(毫克/百毫升)随时间的增加逐步增高达到峰值,之后血液中酒精含量随时间的增加逐渐降低.
小明根据相关数据和学习函数的经验,对血液中酒精含量随时间变化的规律进行了探究,发现血液中酒精含量y是时间x的函数,其中y表示血液中酒精含量(毫克/百毫升),x表示饮酒后的时间(小时).
下表记录了6小时内11个时间点血液中酒精含量y(毫克/百毫升)随饮酒后的时间x(小时)(x>0)的变化情况.
饮酒后的时间x(小时) | … | 1 | 2 | 3 | 4 | 5 | 6 | … | |||||
血液中酒精含量y (毫克/百毫升) | … | 150 | 200 | 150 | 45 | … |
下面是小明的探究过程,请补充完整:
(1)如图,在平面直角坐标系xOy中,以上表中各对数值为坐标描点,图中已给出部分点,请你描出剩余的点,画出血液中酒精含量y随时间x变化的函数图象;
(2)观察表中数据及图象可发现此函数图象在直线x=两侧可以用不同的函数表达式表示,请你任选其中一部分写出表达式;
(3)按国家规定,车辆驾驶人员血液中的酒精含量大于或等于20毫克/百毫升时属于“酒后驾驶”,不能驾车上路.参照上述数学模型,假设某驾驶员晚上20:00在家喝完250毫升低度白酒,第二天早上6:30能否驾车去上班?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(2016·达州中考)如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N有20km.一轮船以36km/h的速度航行,上午10:00在A处测得灯塔C位于轮船的北偏西30°方向,上午10:40在B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.
(1)若轮船照此速度与航向航向,何时到达海岸线?
(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4, ≈1.7).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com