精英家教网 > 初中数学 > 题目详情

【题目】北京市积极开展城市环境建设,其中污水治理是重点工作之一,以下是北京市2012﹣2017年污水处理率统计表:

年份

2012

2013

2014

2015

2016

2017

污水处理率(%)

83.0

84.6

86.1

87.9

90.0

92.0

(1)用折线图将2012﹣2017年北京市污水处理率表示出来,并在图中标明相应的数据;

(2)根据统计图表中提供的信息,预估2018年北京市污水处理率约为_____%,说明你的预估理由:_____

【答案】 94.0 近三年的污水处理率每年增长2%左右.

【解析】分析:(1)依据北京市2012﹣2017年污水处理率统计表中的数据,即可得到折线统计图;

(2)预估理由须包含统计图表中提供的信息,且支撑预估的数据.

详解:(1)2012﹣2017年北京市污水处理率折线图如图所示:

(2)因为从2015年到2017年污水处理率每年增长2%左右,所以2018年北京市污水处理率约为94.0%.

故答案为:94.0,近三年的污水处理率每年增长2%左右.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知点A(-2,2),B(8,12)在抛物线y=ax2+bx.

(1)求抛物线的解析式

(2)如图1,点F的坐标为(0,m)(m>4),直线AF交抛物线于另一点G,过点Gx轴的垂线,垂足为H,设抛物线与x轴的正半轴交于点E,连接FH、AE,求之值(用含m的代数式表示)

(3)如图2,直线AB分别交x轴、y轴于C、D两点,点P从点C出发,沿射线CD方向匀速运动,速度为每秒个单位长度,同时点Q从原点O出发,沿x轴正方向匀速运动,速度为每秒1个单位长度,点M是直线PQ与抛物线的一个交点,当运动到t秒时,QM=3PM,求t的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我国很多城市水资源缺乏,为了加强居民的节水意识,某市制定了每月用水8吨以内(包括8吨)和用水8吨以上两种收费标准(收费标准:每吨水的价格),某用户每月应交水费y(元)是用水量x(吨)的函数,其函数图象如图所示.

1)求出自来水公司在这两个用水范围内的收费标准;

2)若芳芳家6月份共交水费28.1元,请写出用水量超过8吨时应交水费y(元)与用水量x(吨)之间的函数关系,并求出芳芳家6月份的用水量.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,甲、乙用这4张扑克牌玩游戏,他俩将扑克牌洗匀后背面朝上,放置在桌面上.

(1)甲从中任抽取一张,抽到4的概率是多少?

(2)甲、乙没人抽一张,甲先抽,乙后抽,抽出的牌不放回,甲、乙约定;只有甲抽到的牌面数字比乙大时甲胜.请你用树状图或列表法说明甲、乙获胜的机会是否相同.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,矩形OABC的顶点OAC的坐标分别为O00),A(﹣x0),C0y),且xy满足

1)矩形的顶点B的坐标是 

2)若DAB中点,沿DO折叠矩形OABC,使A点落在点E处,折痕为DO,连BE并延长BEy轴于Q点.

求证:四边形DBOQ是平行四边形.

求△OEQ面积.

3)如图2,在(2)的条件下,若R在线段AB上,AR4PAB左侧一动点,且∠RPA135°,求QP的最大值是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在菱形ABCD中,ACBD相交于点O,过点O的线段EF与一组对边AB,CD分别相交于点E,F.

(1)求证:AE=CF;

(2)若AB=2,点EAB中点,求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲乙两人匀速从同一地点到1500米处的图书馆看书,甲出发5分钟后,乙以50/分的速度沿同一路线行走.设甲乙两人相距s(米),甲行走的时间为t(分),s关于t的函数图象的一部分如图所示.下列结论正确的个数是(  )

1t5时,s150;(2t35时,s450;(3)甲的速度是30/分;(4t12.5时,s0

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知AB是⊙O的直径,C是⊙O上一点,连接AC,过点C作直线CD⊥AB于点DEAB上一点,直线CE与⊙O交于点F,连结AF,与直线CD交于点G

求证:(1∠ACD=∠F; (2AC2=AG·AF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知,在平面直角坐标系中,A(3,4),B(0,2).

(1)OAB绕O点旋转180°得到OA1B1,请画出OA1B1,并写出A1,B1的坐标;

(2)判断以A,B,A1,B1为顶点的四边形的形状,并说明理由.

查看答案和解析>>

同步练习册答案