精英家教网 > 初中数学 > 题目详情

【题目】如图,在平面直角坐标系中,已知一次函数的图象与反比例函数的图象交于点两点.

1)求一次函数的表达式及点的坐标;

2)点是第四象限内反比例函数图象上一点,过点轴的平行线,交直线于点,连接,若,求点的坐标.

【答案】1y=-2xB2-4);(2

【解析】

1)先求出点A的坐标,再代入一次函数即可求出一次函数表达式,由一次函数和反比例函数解析式即可求出点B的坐标;

2)设点m0,表达出PC的长度,进而表达出△POC的面积,列出方程即可求出m的值.

解:(1)∵点在反比例函数图象上,

,解得:a=-2

代入得:,解得:k=-2

y=-2x

,解得:x=2x=-2

∴点B2-4);

2)如图,设点m0

PCx轴,

∴点C的纵坐标为,则=-2x,解得:x=

PC=

解得:(舍去),(舍去),

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在每个小正方形的边长为1的网格中,AMN均在格点上.在线段上有一动点B,以为直角边在的右侧作等腰直角,使G是一个小正方形边的中点.

(1)当点B的位置满足时,求此时的长_______

(2)请用无刻度的直尺,在如图所示的网格中,画出一个点C,使其满足线段最短,并简要说明点C的位置是如何找到的(不要求证明)____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】解不等式组:请结合题意填空,完成本题的解答:

1)解不等式①,得:  

2)解不等式②得:  

3)把不等式①和②的解集在数轴上表示出来;

4)原不等式组的解集为:  

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在6×4的方格纸ABCD中,请按要求画格点线段(端点在格点上),且线段的端点均不与点ABCD重合.

1)在图1中画格点线段EFGH各一条,使点EFGH分别落在边ABBCCDDA上,且EFGHEF不平行GH

2)在图2中画格点线段MNPQ各一条,使点MNPQ分别落在边ABBCCDDA上,且PQMN

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商店购进一批成本为每件40元的商品,经调查发现,该商品每天的销售量(件与销售单价(元之间满足一次函数关系,其图象如图所示.

1)求该商品每天的销售量与销售单价之间的函数关系式;

2)若商店要使销售该商品每天获得的利润等于1000元,每天的销售量应为多少件?

3)若商店按单价不低于成本价,且不高于65元销售,则销售单价定为多少元时,才能使销售该商品每天获得的利润最大?最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】构建几何图形解决代数问题是“数形结合”思想的重要性,在计算tan15°时,如图.在RtACB中,∠C90°,∠ABC30°,延长CB使BDAB,连接AD,得∠D15°,所以tan15°.类比这种方法,计算tan22.5°的值为(  )

A.B.1C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为倡导健康环保,自带水杯已成为一种好习惯,某超市销售甲,乙两种型号水杯,进价和售价均保持不变,其中甲种型号水杯进价为25/个,乙种型号水杯进价为45/个,下表是前两月两种型号水杯的销售情况:

时间

销售数量(个)

销售收入(元)(销售收入=售价×销售数量)

甲种型号

乙种型号

第一月

22

8

1100

第二月

38

24

2460

1)求甲、乙两种型号水杯的售价;

2)第三月超市计划再购进甲、乙两种型号水杯共80个,这批水杯进货的预算成本不超过2600元,且甲种型号水杯最多购进55个,在80个水杯全部售完的情况下设购进甲种号水杯a个,利润为w元,写出wa的函数关系式,并求出第三月的最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c和直线y=x+1交于A,B两点,点Ax轴上,点B在直线x=3上,直线x=3x轴交于点C

(1)求抛物线的解析式;

(2)点P从点A出发,以每秒个单位长度的速度沿线段AB向点B运动,点Q从点C出发,以每秒2个单位长度的速度沿线段CA向点A运动,点P,Q同时出发,当其中一点到达终点时,另一个点也随之停止运动,设运动时间为t秒(t>0).以PQ为边作矩形PQNM,使点N在直线x=3上.

①当t为何值时,矩形PQNM的面积最小?并求出最小面积;

②直接写出当t为何值时,恰好有矩形PQNM的顶点落在抛物线上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC,以AB为直径的半圆交AC于点D,交BC于点E,延长AE至点F,使EF=AE,连接FBFC

1)求证:四边形ABFC是菱形;

2)若AD=BE=1,求半圆的面积.

查看答案和解析>>

同步练习册答案