精英家教网 > 初中数学 > 题目详情

【题目】如图,AB∥CD,直线EF分别与AB,CD交于点G,H,GM⊥EF,HN⊥EF,交AB于点N,∠1=50°.

(1)求∠2的度数;
(2)试说明HN∥GM;
(3)∠HNG=°.

【答案】
(1)解:∵AB∥CD,

∴∠EHD=∠1=50°,

∴∠2=∠EHD=50°


(2)解:∵GM⊥EF,HN⊥EF,

∴∠MGH=90°,∠NHF=90°,

∴∠MGH=∠NHF,

∴HN∥GM


(3)40
【解析】解:(3)∵HN⊥EF,
∴∠NHG=90°
∵∠NGH=∠1=50°,
∴∠HNG=90°﹣50°=40°.
所以答案是40.
【考点精析】通过灵活运用平行线的判定与性质,掌握由角的相等或互补(数量关系)的条件,得到两条直线平行(位置关系)这是平行线的判定;由平行线(位置关系)得到有关角相等或互补(数量关系)的结论是平行线的性质即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知a,b,c在数轴上对应点的位置如图所示,化简:|a|﹣|a+b|﹣ +|b﹣c|.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在矩形ABCD中,已知AB=4,BC=3,矩形在直线l上绕其右下角的顶点B向右旋转90°至图①位置,再绕右下角的顶点继续向右旋转90°至图②位置,…,以此类推,这样连续旋转2017次后,顶点A在整个旋转过程中所经过的路程之和为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列等式中正确的是(  )

A. ﹣(ab)=ba B. ﹣(a+b)=﹣a+b

C. 2(a+1)=2a+1 D. ﹣(3﹣x)=3+x

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某家电销售商城电冰箱的销售价为每台2100元,空调的销售价为每台1750元,每台电冰箱的进价比每台空调的进价多400元,商城用80000元购进电冰箱的数量与用64000元购进空调的数量相等.

求每台电冰箱与空调的进价分别是多少?

(2)现在商城准备一次购进这两种家电共100台,设购进电冰箱x台,这100台家电的销售总利润为y元,要求购进空调数量不超过电冰箱数量的2倍,总利润不低于13000元,请分析合理的方案共有多少种?并确定获利最大的方案以及最大利润.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用配方法解方程x2+8x+7=0,则配方正确的是( )
A.(x﹣4)2=9
B.(x+4)2=9
C.(x﹣8)2=16
D.(x+8)2=57

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,等边△ABC的边长是2,D、E分别为AB、AC的中点,延长BC至点F,使CF= BC,连接CD和EF.
(1)求证:DE=CF;
(2)求EF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为完成下列任务,你认为采用什么调查方式最合适?

(1)了解某市居民的年人均收入;

(2)了解某班学生期末考试的数学成绩;

(3)了解一个月内某城市一条道路的车流量;

(4)了解某电视台一个娱乐节目的收视率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,平行四边形ABOC如图放置,点AC的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形ABOC′.

(1)若抛物线经过点CAA,求此抛物线的解析式;

(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,AMA的面积最大?最大面积是多少?并求出此时M的坐标;

(3)若P为抛物线上一动点,Nx轴上的一动点,点Q坐标为(1,0),当PNBQ构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.

查看答案和解析>>

同步练习册答案