精英家教网 > 初中数学 > 题目详情
15.如图,CD为⊙O的弦,直径AB为4,AB⊥CD于E,∠A=30°,则$\widehat{BC}$的长为$\frac{2}{3}$π(结果保留π).

分析 连接AC,由垂径定理的CE=DE,根据线段垂直平分线的性质得到AC=AD,由等腰三角形的性质得到∠CAB=∠DAB=30°,由圆周角定理得到∠COB=60°,根据弧长的计算公式即可得到结论.

解答 解:连接AC,
∵CD为⊙O的弦,AB是⊙O的直径,
∴CE=DE,
∵AB⊥CD,
∴AC=AD,
∴∠CAB=∠DAB=30°,
∴∠COB=60°,
∴$\widehat{BC}$的长=$\frac{60•π×{2}^{2}}{360}$=$\frac{2}{3}$π,
故答案为:$\frac{2}{3}$π.

点评 本题考查的是垂径定理,线段的垂直平分线的判定,等腰三角形的性质,熟练掌握垂径定理是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.为便民惠民,人民公园特推出下列优惠方案:
①普通卡:每人每次20元;
②贵宾卡:年费为200元,每人每次10元;
③至尊卡:年费为500元,但进入不再收费.
设某人参观x次时,所需总费用为y元.
(1)直接写出选择普通卡和贵宾卡消费时的函数关系式;
(2)在同一个坐标系中,若三种方案对应的函数图象如图所示,求出点A,B,C的坐标;
(3)根据图象,直接写出选择哪种方案更合算.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

6.阅读:我们约定,在平面直角坐标系中,经过某点且平行于坐标轴或平行于两坐标轴夹角平分线的直线,叫该点的“特征线”.例如,点M(1,3)的特征线有:x=1,y=3,y=x+2,y=-x+4.

问题与探究:如图,在平面直角坐标系中有正方形OABC,点B在第一象限,A、C分别在x轴和y轴上,抛物线$y=\frac{1}{4}{({x-m})^2}+n$经过B、C两点,顶点D在正方形内部.
(1)直接写出点D(m,n)所有的特征线;
(2)若点D有一条特征线是y=x+1,求此抛物线的解析式;
(3)点P是AB边上除点A外的任意一点,连接OP,将△OAP沿着OP折叠,点A落在点A′的位置,当点A′在平行于坐标轴的D点的特征线上时,满足(2)中条件的抛物线向下平移多少距离,其顶点落在OP上?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

3.如图,平行四边形ABCD的对角线AC、BD交于点O,若AC=DC=4,BD=6,则△AOB的周长为(  )
A.14B.12C.10D.9

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,已知点A(3,m),B(-2,6)在反比例函数$y=\frac{k}{x}$的图象上,直线AB与x轴交于点C.
(1)求直线AB的解析式;
(2)若点D在x轴上,且DC=OA,则求点D的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

20.正比例函数y1=k1x的图象与反比例函数y2=$\frac{{k}_{2}}{x}$的图象相交于A,B两点,其中点B的横坐标为-2,当y1<y2时,x的取值范围是(  )
A.x<-2或x>2B.x<-2或0<x<2C.-2<x<0或0<x<2D.-2<x<0或x>2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒(0<x≤3),解答下列问题:
(1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值;
(2)是否存在x的值,使得QP⊥DP?试说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.如图,已知O是直线MN上的一点,∠AOB=90°,经过点O的直线DC平分∠BON,∠1=38°,求∠3和∠DOA的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

3.在解方程组:$\left\{\begin{array}{l}{7x+3y=15①}\\{2x-3y=12②}\end{array}\right.$中,①+②,得到的方程是9x=27.

查看答案和解析>>

同步练习册答案