精英家教网 > 初中数学 > 题目详情

【题目】已知a+b=3,ab=2,计算:a2b+ab2等于_________

【答案】6

【解析】试题分析:∵a+b=3ab=2

∴a2b+ab2=aba+b=6

故答案为:6

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】用一条长为18cm细绳围成一个等腰三角形.

1)如果腰长是底边的2倍,那么各边的长是多少?

2)能围成有一边的长为4cm的等腰三角形吗?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列二次函数中,图象以直线x=2为对称轴、且经过点(0,1)的是(

A.y=(x﹣2)2+1 B.y=(x+2)2+1

C.y=(x﹣2)2﹣3 D.y=(x+2)2﹣3

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明、小亮、小芳和两个陌生人甲、乙同在如图所示的地下车库等电梯,已知两个陌生人到1至4层的任意一层出电梯,并设甲在a层出电梯,乙在b层出电梯.

(1)小明想求出甲、乙二人在同一层楼出电梯的概率;

(2)小亮和小芳打赌说:“若甲、乙在同一层或相邻楼层出电梯,则小亮胜,否则小芳胜”.该游戏是否公平?若公平,说明理由;若不公平,请修改游戏规则,使游戏公平.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】RtABC中,ACB=90°A=30°BDABC的角平分线,DEAB于点E

1)如图1,连接EC,求证:EBC是等边三角形;

2)点M是线段CD上的一点(不与点CD重合),以BM为一边,在BM的下方作BMG=60°MGDE延长线于点G.请你在图2中画出完整图形,并直接写出MDDGAD之间的数量关系;

3)如图3,点N是线段AD上的一点,以BN为一边,在BN的下方作BNG=60°NGDE延长线于点G.试探究NDDGAD数量之间的关系,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有下列命题:三角形的两边之和大于第三边;相等的角是对顶角;ab互为倒数ab=1;④绝对值等于本身的数是正数其中真命题的个数是( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算与化简:

1|﹣2|+﹣22﹣2π﹣70

2[﹣x﹣1y﹣2﹣3﹣yx2﹣x3y]÷x2y

3÷32

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】学习了三角形全等的判定方法(即“SAS”、“ASA”、“AAS”、“SSS”)和直角三角形全等的判定方法(即“HL”)后,我们继续对两个三角形满足两边和其中一边的对角对应相等的情形进行研究.

【初步思考】

我们不妨将问题用符号语言表示为:在ABCDEF中,AC=DFBC=EFB=E,然后,对∠B进行分类,可分为B是直角、钝角、锐角三种情况进行探究.

【深入探究】

第一种情况:当∠B是直角时,ABC≌△DEF

(1)如图①,在ABCDEFAC=DFBC=EFB=E=90°,根据______,可以知道RtABCRtDEF

第二种情况:当∠B是钝角时,ABC≌△DEF

(2)如图②,在ABCDEFAC=DFBC=EFB=E,且∠BE都是钝角,求证:ABC≌△DEF

第三种情况:当∠B是锐角时,ABCDEF不一定全等.

(3)在ABCDEFAC=DFBC=EFB=E,且∠BE都是锐角,请你用尺规在图③中作出DEF,使DEFABC不全等.(不写作法,保留作图痕迹)

(4)B还要满足什么条件,就可以使ABC≌△DEF?请直接写出结论:在ABCDEF中,AC=DFBC=EFB=E,且∠BE都是锐角,若______,则ABC≌△DEF

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】台球桌的形状是一个长方形,当母球被击打后可能在不同的边上反弹,为了母球最终击中目标球,击球者需作出不同的设计,确定击球的方向,因此,台球既复杂又有趣,台球运动被称为智慧和技能的较量.

问题1:如图(1),如果母球P击中桌边点A,经桌边反弹击中相邻另一条桌边,再次反弹,那么母球P经过的路线BCPA平行吗?证明你的判断.

问题2:在一张简易球桌ABCD上,如图(2)所示,目标球F、母球E之间有一个G球阻挡,击球者想通过击打母球E先撞球台的CD边,过一次反弹后再撞击F球,他应将E球打到CD边上的哪一点?

请用尺规作图在图(2)中作出这一点.

问题3:如图(3),在简易球台ABCD上,已知AB=4BC=3.母球P从角落A45°角击出,在桌子边缘回弹若干次后,最终必将落入 (填ABCD)角落的球袋,在它落入球袋之前,与桌子边缘共回弹了 次;若AB=100BC=99,母球P还终将会落入某个角落的球袋,则它在落入球袋之前,在桌子边缘总共回弹了 次.

考点:作图应用与设计作图.

查看答案和解析>>

同步练习册答案