精英家教网 > 初中数学 > 题目详情
精英家教网平面直角坐标系中,△ABC的三个顶点坐标分别为A(0,4),B(2,4),C(3,-1).
(1)试在平面直角坐标系中,标出A、B、C三点;
(2)求△ABC的面积.
(3)若△A1B1C1与△ABC关于x轴对称,写出A1、B1、C1的坐标.
分析:(1)根据三点的坐标,在直角坐标系中分别标出位置即可.
(2)以AB为底,则点C到AB得距离即是底边AB的高,结合坐标系可得出高为点C的纵坐标的绝对值加上点B的纵坐标的绝对值,从而根据三角形的面积公式计算即可.
(3)关于x轴对称的点的坐标,横坐标不变,纵坐标互为相反数,从而可得出A1、B1、C1的坐标.
解答:解:(1)如图所示:
精英家教网
(2)由图形可得:AB=2,AB边上的高=|-1|+|4|=5,
∴△ABC的面积=
1
2
AB×5=5.
(3)∵A(0,4),B(2,4),C(3,-1),△A1B1C1与△ABC关于x轴对称,
∴A1(0,-4)、B1(2,-4)、C1.(3,1).
点评:本题考查轴对称作图及直角坐标系的知识,难度一般,解答本题的关键是正确的找出三点的位置,另外要掌握关于x轴对称的点的坐标的特点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,平面直角坐标系中有一直角梯形OMNH,点H的坐标为(-8,0),点N的坐标为(-6,-4).
(1)画出直角梯形OMNH绕点O旋转180°的图形OABC,并写出顶点A,B,C的坐标(点M的对应点为A,点N的对应点为B,点H的对应点为C);
(2)求出过A,B,C三点的抛物线的表达式;
(3)试设计一种平移使(2)中的抛物线经过四边形ABCO的对角线交点;
(4)截取CE=OF=AG=m,且E,F,G分别在线段CO,OA,AB上,四边精英家教网形BEFG是否存在邻边相等的情况?若存在,请直接写出此时m的值,并指出相等的邻边;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标系中,以O(0,0),A(1,1),B(3,0)为顶点,构造平行四边形,则第四个顶点的坐标可以是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

8、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:
1、f(a,b)=(-a,b).如:f(1,3)=(-1,3);
2、g(a,b)=(b,a).如:g(1,3)=(3,1);
3、h(a,b)=(-a,-b).如:h(1,3)=(-1,-3).
按照以上变换有:f(g(2,-3))=f(-3,2)=(3,2),那么f(h(5,-3))等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

12、在平面直角坐标系中,将直线y=-2x+1向下平移4个单位长度后.所得直线的解析式为
y=-2x-3

查看答案和解析>>

科目:初中数学 来源: 题型:

13、下列说法中,正确的有(  )
①无限小数不一定是无理数
②矩形具有的性质平行四边形一定具有.
③平面直角坐标系中的点与有序实数对是一一对应的.
④一个数平方根与这个数的立方根相同的数是0和1.

查看答案和解析>>

同步练习册答案