【题目】25 日某路段雷达测速区监测到一组汽车时速数据,经整理得到如下频数表和频数直方图(每组含后一边界值,不含前一边界值).
(1)请你把表中的数据填写完整.
(2)补全频数直方图.
(3)若该路段限速 70(汽车时速高于 70 千米/小时即为违章),抽测到违章车辆有多少辆?统计表明 25 日全天通过这个路段的汽车大约有 15000 辆,请估计这天超速违章的车辆有多少辆?
【答案】(1)0.18,78,70,0.35;(2)补全频数直方图见解析;(3)抽测到违章车辆有6辆;估计这天超速违章的车辆有450辆.
【解析】
(1)根据第一组的频数和频率,可以求出调查的总数,进而求出各个组的频数、频率,填写表格即可,
(2)根据每个组的频数,可以补全频数分布直方图,
(3)调查的车辆中超速违章的有4+2=6辆,占调查总数的(0.02+0.01),可以估计总体中的违章车辆.
(1)由时速为的频数和频率求调查的总数为:10÷0.05=200,
根据时速为的频数为36,所以频率为:36÷200=0.18,
根据时速为的频率为0.39,所以频数为:200×0.39=78,
时速为的频数为:200-10-36-78-4-2=70,频率为:70÷200=0.35,
故表格中,依次填写0.18,78,70,0.35;
(2)补全的频数直方图如图所示:
(3)调查的车辆中超速违章的有:4+2=6辆,
频率分别为:0.02和0.01,
∴估计这天超速违章的车辆有:15000×(0.02+0.01)=450辆,
答:抽测到违章车辆有6辆;这个路段的汽车大约有15000辆.估计这天超速违章的车辆有450辆.
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟,在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t(分)之间的关系如图所示,下列结论:
①甲步行的速度为60米/分;
②乙走完全程用了32分钟;
③乙用16分钟追上甲;
④乙到达终点时,甲离终点还有300米
其中正确的结论有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的面积为20cm2,对角线交于点O,以AB、AO为邻边作平行四边形AOC1B,对角线交于点O1;以AB、AO1为邻边作平行四边形AO1C2B2;…;依此类推,则平行四边形AO4C5B的面积为________,平行四边形AOnCn+1B的面积为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=x2+bx+c(b、c是常数)与x轴有两个交点,其中有一点的坐标为A(1,0),点P(m,t)(m≠0)为抛物线上的一个动点.
(1)设y′=m+t,写出y′关于m的函数解析式,并求出该函数图象的对称轴(用含c的代数式表示);
(2)在(1)的条件下,当m≤3时,与其对应的函数y′的最小值为﹣,求抛物线y=x2+bx+c的解析式;
(3)在(2)的条件下,P点关于原点的对称点为P′,且P′落在第一象限内,当P′A2取得最小值时,求m与t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两人在笔直的道路AB上相向而行,甲骑自行车从A地到B地,乙驾车从B地到A地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为千米/分,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的部分函数图象如图.
(1)A、B两地相距____千米,甲的速度为____千米/分;
(2)求线段EF所表示的y与x之间的函数表达式;
(3)当乙到达终点A时,甲还需多少分钟到达终点B?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图 1,C为线段 AB上一点,以 AC,BC为一边,在 AB同侧做长方形 ACDE和长方形 CBFG,且 满足 AC=2AE,CB=2BF,记 AC2a,BC2b(a b) .
(1)记长方形 ACDE的面积为 s1 ,长方形 CBFG的面积为 s2 .若 AB6, a2b ,求 s1 s2 .
(2)如图 2,点 P是线段 CA上的动点.
①当点 P从点 C向左移动个单位后,求△EAP与△FBP的面积之差.
②当点 P从点 C向左移动 个单位后,△EAP与△FBP的面积之差记为 m1 ; 当点 P从点 C向左移动 (a b) 个单位后,△EAP与△FBP的面积之差记为 m2 ,求 的值(结果用含 n 的代数式表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在正方形ABCD中,△AEF的顶点E,F分别在BC,CD边上,高AG与正方形的边长相等,
(1)求∠EAF的度数;
(2)在图①中,连结BD分别交AE、AF于点M、N,将△ADN绕点A顺时针旋转90°至△ABH位置,连结MH,得到图②.求证:MN2=MB2+ ND2 ;
(3)在图②中,若AG=12, BM=,直接写出MN的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一个长方体的表面展开图,每个外表面都标注了字母,请根据要求回答问题:
(1)如果面A在多面体的底部,那么哪一个面会在上面?
(2)如果面F在前面,从左面看是面B,那么哪一个面会在上面?
(3)如果从右面看是面C,面D在后面,那么哪一个面会在上面?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在矩形ABCD中,点E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,若AB=6,BC=4,则FD=__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com