精英家教网 > 初中数学 > 题目详情
(1999•黄冈)已知y=y1-y2,y1与x2成正比例,y2与x成反比例,当x=1时y=3,x=-1时y=7,则当x=2时,y的值是   
【答案】分析:依题意可设出y1、y2与x的函数关系式,进而可得到y、x的函数关系式;已知此函数图象经过(1,3)、(-1,7),即可用待定系数法求得y、x的函数解析式,进而可求出x=2时,y的值.
解答:解:依题意,设y1=mx2,y2=,(m、n≠0)
∴y=mx2+
依题意有,

解得
∴y=5x2-
当x=2时,y=5×4-1=19.
点评:能够正确的表示出y、x的函数关系式,进而用待定系数法求得其解析式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:1999年全国中考数学试题汇编《锐角三角函数》(02)(解析版) 题型:解答题

(1999•黄冈)已知抛物线y=x2+3mx+18m2-m与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C(0,b),O为原点.
(1)求m的取值范围;
(2)若m,且OA+OB=3OC,求抛物线解析式及A,B,C的坐标;
(3)在(2)情形下,点P、Q分别从A、O两点同时出发(如图)以相同的速度沿AB、OC向B、C运动,连接PQ与BC交于M,设AP=k,问是否存在k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求所有k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《图形的相似》(01)(解析版) 题型:解答题

(1999•黄冈)已知抛物线y=x2+3mx+18m2-m与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C(0,b),O为原点.
(1)求m的取值范围;
(2)若m,且OA+OB=3OC,求抛物线解析式及A,B,C的坐标;
(3)在(2)情形下,点P、Q分别从A、O两点同时出发(如图)以相同的速度沿AB、OC向B、C运动,连接PQ与BC交于M,设AP=k,问是否存在k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求所有k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:1999年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(1999•黄冈)已知抛物线y=x2+3mx+18m2-m与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C(0,b),O为原点.
(1)求m的取值范围;
(2)若m,且OA+OB=3OC,求抛物线解析式及A,B,C的坐标;
(3)在(2)情形下,点P、Q分别从A、O两点同时出发(如图)以相同的速度沿AB、OC向B、C运动,连接PQ与BC交于M,设AP=k,问是否存在k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求所有k值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:1999年湖北省黄冈市中考数学试卷(解析版) 题型:解答题

(1999•黄冈)已知抛物线y=x2+3mx+18m2-m与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C(0,b),O为原点.
(1)求m的取值范围;
(2)若m,且OA+OB=3OC,求抛物线解析式及A,B,C的坐标;
(3)在(2)情形下,点P、Q分别从A、O两点同时出发(如图)以相同的速度沿AB、OC向B、C运动,连接PQ与BC交于M,设AP=k,问是否存在k值,使以P、B、M为顶点的三角形与△ABC相似?若存在,求所有k值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案