根据以下10个乘积,回答问题:
11×29; 12×28; 13×27; 14×26; 15×25;
16×24; 17×23; 18×22; 19×21; 20×20.
(1)试将以上各乘积分别写成一个“□2-○2”(两数平方差)的形式,并写出其中一个的思考过程;
(2)将以上10个乘积按照从小到大的顺序排列起来;
(3)试由(1)、(2)猜测一个一般性的结论.(不要求证明)
解:(1)11×29=20
2-9
2;12×28=20
2-8
2;13×27=20
2-7
2;
14×26=20
2-6
2;15×25=20
2-5
2;16×24=20
2-4
2;
17×23=20
2-3
2;18×22=20
2-2
2;19×21=20
2-1
2;
20×20=20
2-0
2 …
例如,11×29;假设11×29=□
2-○
2,
因为□
2-○
2=(□+○)(□-○);
所以,可以令□-○=11,□+○=29.
解得,□=20,○=9.故11×29=20
2-9
2.
(或11×29=(20-9)(20+9)=20
2-9
2(2)这10个乘积按照从小到大的顺序依次是:11×29<12×28<13×27<14×26<15×25<16×24<17×23<18×22<19×21<20×20
(3)①若a+b=40,a,b是自然数,则ab≤20
2=400.
②若a+b=40,则ab≤20
2=400. …
③若a+b=m,a,b是自然数,则ab≤
.
④若a+b=m,则ab≤
.
⑤若a,b的和为定值,则ab的最大值为
.
⑥若a
1+b
1=a
2+b
2=a
3+b
3=…=a
n+b
n=40.且
|a
1-b
1|≥|a
2-b
2|≥|a
3-b
3|≥…≥|a
n-b
n|,
则 a
1b
1≤a
2b
2≤a
3b
3≤…≤a
nb
n. …
⑦若a
1+b
1=a
2+b
2=a
3+b
3=…=a
n+b
n=m.且
|a
1-b
1|≥|a
2-b
2|≥|a
3-b
3|≥…≥|a
n-b
n|,
则a
1b
1≤a
2b
2≤a
3b
3≤…≤a
nb
n.
⑧若a+b=m,
a,b差的绝对值越大,则它们的积就越小.
说明:给出结论①或②之一的得;给出结论③、④或⑤之一的得;
给出结论⑥、⑦或⑧之一的得.
分析:(1)根据要求求出两数的平均数,再写成平方差的形式即可.
(2)减去的数越大,乘积就越小,据此规律填写即可.
(3)根据排列的顺序可得,两数相差越大,积越小.
点评:本题主要考查整式的混合运算,找出规律是解答本题的关键.