精英家教网 > 初中数学 > 题目详情
已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.
【答案】分析:(1)根据二次函数的交点与图象的关系,证明其方程有两个不同的根即△>0即可;
(2)根据题意,令x=0,整理方程可得关于m的方程,解可得m的值.
解答:证明:(1)令y=0得:x2-(2m-1)x+m2-m=0①
∵△=(2m-1)2-4(m2-m)×1>0(3分)
∴方程①有两个不等的实数根,
∴原抛物线与x轴有两个不同的交点(4分);
(2)令:x=0,根据题意有:m2-m=-3m+4(5分)
解得m=-1+或-1-(9分).
(说明:少一个解扣2分)
点评:本题考查学生将二次函数的图象与解析式的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线的解析式为y=x2-(2m-1)x+m2-m.
(1)“此抛物线与x轴必有两个不同的交点”,请问这个结论正确吗
 
(请填“正确”或“不正确”);
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,则m=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示的两条抛物线关于y轴对称,已知左边抛物线的解析式是y=
12
(x+3)2+5,则右边抛物线的顶点是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线的解析式为y=-2(x+4)(x-1).
(1)求抛物线与y轴的交点坐标;
(2)写出这个抛物线的对称轴方程;
(3)求出抛物线在x轴上方的部分所对应的自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年安徽省滁州市定远中学九年级(上)第一次月考数学试卷(解析版) 题型:解答题

已知:抛物线的解析式为y=x2-(2m-1)x+m2-m,
(1)求证:此抛物线与x轴必有两个不同的交点;
(2)若此抛物线与直线y=x-3m+4的一个交点在y轴上,求m的值.

查看答案和解析>>

同步练习册答案