ÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)
£»
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£»
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£»
1
2003¡Á2005
=
1
2
(
1
2003
-
1
2005
)

¡­
¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2003¡Á2005

=
1
2
(1-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+¡­+
1
2003
-
1
2005
)

½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚºÍʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­
ÖУ¬µÚ5ÏîΪ
 
£¬µÚnÏîΪ
 
£¬ÉÏÊöÇóºÍµÄÏë·¨ÊÇ£º½«ºÍʽÖеĸ÷·ÖÊýת»¯ÎªÁ½¸öÊýÖ®²î£¬Ê¹µÃÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
£¬´Ó¶ø´ïµ½ÇóºÍÄ¿µÄ£®
£¨2£©ÀûÓÃÉÏÊö½áÂÛ¼ÆËã
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+¡­+
1
(x+2004)(x+2006)
£®
·ÖÎö£º£¨1£©ÊÇÒ»µÀ¹æÂÉÌ⣬ÿ¸ö¼ÓʽµÄ·ÖĸÊÇÁ½¸öÏàÁÚµÄÆæÊýµÄ»ý£¬·Ö×Ó¶¼ÊÇ1£¬µÚnÏîµÄ·ÖĸÊÇ£¨2n-1£©£¨2n+1£©£®´Ó¶øÇóµÃ½á¹û£®
£¨2£©ÀûÓÃÔĶÁ²ÄÁϸæËߵķ½·¨ºÍ¹æÂɼÆËã·ÖʽµÄ¼Ó¼õ·¨£®
½â´ð£º½â£º£¨1£©Í¨¹ý¹Û²ì¹æÂɵÃÖªÕâЩʽ×ӵķÖ×Ó¶¼Îª1£¬µÚnÏî¼ÓʽµÄ·ÖĸΪ£¨2n-1£©£¨2n+1£©£¬
¡àµÚ5ÏîΪ
1
9¡Á11
µÚnÏîΪ
1
(2n-1)(2n+1)
£¬Ê¹µÃÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ»¯Îª0£¬´Ó¶øÇó½â£®

£¨2£©Ô­Ê½=
1
2
(
1
x
-
1
x+2
)+
1
2
(
1
x+2
-
1
x+4
)+¡­+
1
2
(
1
x+2004
-
1
x+2006
)

=
1
2
(
1
x
-
1
x+2
+
1
x+2
-
1
x+4
¡­+
1
x+2004
-
1
x+2006
)

=
1
2
(
1
x
-
1
x+2006
)

=
1003
x(x+2006)
£®
µãÆÀ£º±¾Ì⿼²éÁË·ÖʽµÄ¼Ó¼õ·¨¼ÆË㣬ҪÇóѧÉúͨ¹ýÔĶÁ²ÄÁÏ£¬Ñ°ÕÒ½âÌâµÄ¹æÂɺͷ½·¨ÊÇÒ»µÀÀí½âºÍÔËÓýÏÇ¿µÄ·Öʽ¼Ó¼õ¼ÆËãÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÇëÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)
£»
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£»
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£»
¡­
1
2007¡Á2009
=
1
2
(
1
2007
-
1
2009
)

¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­+
1
2007¡Á2009

=
1
2
(
1
1
-
1
3
+
1
3
-
1
5
+
1
5
-
1
7
+¡­+
1
2007
-
1
2009
)

=
1
2
¡Á(1-
1
2009
)

=
1004
2009

½â´ðÏÂÁÐÎÊÌ⣺
£¨1£©ÔÚºÍʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+¡­
ÖУ¬µÚ5ÏîΪ
 
£¬µÚnÏîΪ
1
(2n-1)(2n+1)
£¬ÉÏÊöÇóºÍµÄÏë·¨ÊÇ£º½«ºÍʽÖеĸ÷·ÖÊýת»¯ÎªÁ½¸öÊýÖ®²î£¬Ê¹µÃÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
£¬´Ó¶ø´ïµ½ÇóºÍÄ¿µÄ£®
£¨2£©ÀûÓÃÉÏÊö½áÂÛ¼ÆËã
1
x(x+2)
+
1
(x+2)(x+4)
+
1
(x+4)(x+6)
+¡­+
1
(x+2008)(x+2010)

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÔĶÁÀí½â

ÔĶÁÏÂÁвÄÁÏ£º
¡ß
1
1¡Á3
=
1
2
(1-
1
3
)£¬
1
3¡Á5
=
1
2
(
1
3
-
1
5
)£¬
1
5¡Á7
=
1
2
(
1
5
-
1
7
)¡­
1
17¡Á19
=
1
2
(
1
17
-
1
19
)

¡à
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
+
1
7¡Á9
+¡­+
1
17¡Á19
=
1
2
(1-
1
3
+
1
3
-
1
5
+¡­+
1
17
-
1
19
)=
9
19

½â´ðÎÊÌ⣺
£¨1£©ÔÚʽ
1
1¡Á3
+
1
3¡Á5
+
1
5¡Á7
¡­
ÖУ¬µÚÁùÏîΪ
 
£¬µÚnÏîΪ
 
£¬ÉÏÊöÇóºÍµÄÏë·¨ÊÇͨ¹ýÄæÓÃ
 
·¨Ôò£¬½«Ê½Öи÷·ÖÊýת»¯ÎªÁ½¸öʵÊýÖ®²î£¬Ê¹µÃ³ýÊ×Ä©Á½ÏîÍâµÄÖмä¸÷Ïî¿ÉÒÔ
 
´Ó¶ø´ïµ½ÇóºÍµÄÄ¿µÄ£»
£¨2£©½â·½³Ì
1
x(x+2)
+
1
(x+2)(x+4)
+¡­+
1
(x+8)(x+10)
=
5
24
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÁвÄÁÏ£º
1
1¡Á3
=
1
2
(1-
1
3
)
£¬
1
3¡Á5
=
1
2
(
1
3
-
1
5
)
£¬
1
5¡Á7
=
1
2
(
1
5
-
1
7
)
£¬¡­
ÊÜ´ËÆô·¢£¬ÇëÄã½âÏÂÃæµÄ·½³Ì£º
1
x(x+3)
+
1
(x+3)(x+6)
+
1
(x+6)(x+9)
=
3
2x+18
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ÔĶÁÏÂÁвÄÁÏ£º
1
1+
2
=
2
-1
(1+
2
)(
2
-1)
=
2
-1£¬
1
2
+
3
=
3
-
2
(
2
+
3
)(
3
-
2
)
=
3
-
2
£¬
1
3
+2
=
2-
3
(
3
+2)(2-
3
)
=2-
3
£¬
1
2+
5
=
5
-2
(2+
5
)(
5
-2)
=
5
-2£®¶ÁÍêÒÔÉϲÄÁÏ£¬ÇëÄã¼ÆËãÏÂÁи÷Ì⣺
£¨1£©
1
3+
10
=
10
-3
10
-3
£»
£¨2£©
1
n
+
n+1
=
n+1
-
n
n+1
-
n
£»
£¨3£©
1
1+
2
+
1
2
+
3
+
1
3
+2
+¡­+
1
2010
+
2011
=
2011
-1
2011
-1
£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸