【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又剩下一个四边形,称为第二次操作;…依此类推,若第次操作余下的四边形是菱形,则称原平行四边形为阶准菱形.如图,中,若,,则为阶准菱形.
判断与推理:
①邻边长分别为和的平行四边形是________阶准菱形;
②小明为了剪去一个菱形,进行了如下操作:如图,把沿折叠(点在上),使点落在边上的点,得到四边形.请证明四边形是菱形.
操作、探究与计算:
①已知的邻边长分别为,,且是阶准菱形,请画出及裁剪线的示意图,并在图形下方写出的值;
②已知的邻边长分别为,,满足,,请写出是几阶准菱形.
科目:初中数学 来源: 题型:
【题目】如图,已知中,,,.如果点由出发沿方向点匀速运动,同时点由出发沿方向向点匀速运动,它们的速度均为.连接,设运动的时间为(单位:).解答下列问题:
当为何值时平行于;
当为何值时,与相似?
是否存在某时刻,使线段恰好把的周长平分?若存在,求出此时的值;若不存在,请说明理由.
是否存在某时刻,使线段恰好把的面积平分?若存在,求出此时的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某工程队修建一条长1200 m的道路,采用新的施工方式,工效提升了50%,结果提前4天完成任务.
(1)求这个工程队原计划每天修道路多少米?
(2)在这项工程中,如果要求工程队提前2天完成任务,那么实际平均每天修建道路的工效比原计划增加百分之几?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+2x+c经过点A(0,3),B(﹣1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为点D,对称轴与x轴交于点E,连接BD,求BD的长.
注:抛物线y=ax2+bx+c(a≠0)的顶点坐标是(﹣,).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道某些代数恒等式可用一些卡片拼成的图形面积来解释,例如:图A可以用来解释,实际上利用一些卡片拼成的图形面积也可以对某些整式进行乘法运算.
(1)图B可以解释的代数恒等式是_____________ ;
(2)现有足够多的正方形和矩形卡片,如图C:
①若要拼出一个面积为的矩形,则需要1号卡片 张,2号卡片 张,3号卡片 张;
②试画出一个用若干张1号卡片、2号卡片和3号卡片拼成的矩形,使该矩形的面积为,并利用你画的图形面积对进行乘法运算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知为等边三角形,点为直线上的一动点(点不与、重合),以为边作菱形(、、、按逆时针排列),使,连接.
如图,当点在边上时,求证:①;②;
如图,当点在边的延长线上且其他条件不变时,结论是否成立?若不成立,请写出、、之间存在的数量关系,并说明理由;
如图,当点在边的延长线上且其他条件不变时,补全图形,并直接写出、、之间存在的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,点B、F、C、E在同一直线上,AC、DF相交于点G,AB⊥BE,垂足为B,DE⊥BE,垂足为E,且AC=DF,BF=EC.求证:
(1)△ABC≌△DEF;
(2)FG=CG.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,桌面上放置了红,黄,蓝三个不同颜色的杯子,杯子口朝上,我们做蒙眼睛翻杯子(杯口朝上的翻为杯口朝下,杯口朝下的翻为杯口朝上)的游戏.
随机翻一个杯子,求翻到黄色杯子的概率;
随机翻一个杯子,接着从这三个杯子中再随机翻一个,请利用树状图求出此时恰好有一个杯口朝上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若,是关于的方程的两个实数根,且(是整数),则称方程为“偶系二次方程”.如方程,,,,,都是“偶系二次方程”.
判断方程是否是“偶系二次方程”,并说明理由;
对于任意一个整数,是否存在实数,使得关于的方程是“偶系二次方程”,并说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com