精英家教网 > 初中数学 > 题目详情
阅读材料:
学习了无理数后,某数学兴趣小组开展了一次探究活动:估算
13
的近似值.
小明的方法:
9
13
16

13
=3+k(0<k<1).
(
13
)2=(3+k)2

∴13=9+6k+k2
∴13≈9+6k.
解得 k≈
4
6

13
≈3+
4
6
≈3.67.
问题:
(1)请你依照小明的方法,估算
41
的近似值;
(2)请结合上述具体实例,概括出估算
m
的公式:已知非负整数a、b、m,若a<
m
<a+1,且m=a2+b,则
m
a+
b
2a
a+
b
2a
(用含a、b的代数式表示);
(3)请用(2)中的结论估算
37
的近似值.
分析:(1)根据题目信息,找出41前后的两个平方数,从而确定出
41
=6+k(0<k<1),再根据题目信息近似求解即可;
(2)根据题目提供的求法,先求出k值,然后再加上a即可;
(3)把a换成6,b换成1代入公式进行计算即可得解.
解答:解:(1)∵
36
41
49

41
=6+k(0<k<1),
(
41
)2=(6+k)2

∴41=36+12k+k2
∴41≈36+12k.
解得k≈
5
12

41
≈6+
5
12
≈6+0.42=6.42;

(2)设
m
=a+k(0<k<1),
∴m=a2+2ak+k2≈a2+2ak,
∵m=a2+b,
∴a2+2ak=a2+b,
解得k=
b
2a

m
≈a+
b
2a


(3)
37
≈6+
1
12
≈6.08.
点评:本题考查了无理数的估算,读懂题目提供信息,然后根据信息中的方法改变数据即可,难度不大,很有趣味性.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

精英家教网阅读材料,解答问题:
命题:如图,在锐角△ABC中,BC=a,CA=b,AB=c,△ABC的外接圆半径为R,则
a
sinA
=
b
sinB
=
c
sinC
=2R.
证明:连接CO并延长交⊙O于点D,连接DB,则∠D=∠A.
因为CD是⊙O的直径,所以∠DBC=90°,
在Rt△DBC中,sin∠D=
BC
DC
=
a
2R

所以sinA=
a
2R
,即
a
sinA
=2R,
同理:
b
sinB
=2R,
c
sinC
=2R,
a
sinA
=
b
sinB
=
c
sinC
=2R,
请阅读前面所给的命题和证明后,完成下面(1)(2)两题:
(1)前面阅读材料中省略了“
b
sinB
=2R,
c
sinC
=2R”的证明过程,请你把“
b
sinB
=2R”的证明过程补写出来.
(2)直接运用阅读材料中命题的结论解题,已知锐角△ABC中,BC=
3
,CA=
2
,∠A=60°,求△ABC的外接圆半径R及∠C.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

同学们,学习了无理数之后,我们已经把数的领域扩大到了实数的范围,这说明我们的知识越来越丰富了!可是,无理数究竟是一个什么样的数呢?下面让我们在几个具体的图形中认识一下无理数.
(1)如图①△ABC是一个边长为2的等腰直角三角形.它的面积是2,把它沿着斜边的高线剪开拼成如图②的正方形ABCD,则这个正方形的面积也就等于正方形的面积即为2,则这个正方形的边长就是
2
,它是一个无理数.

(2)如图,直径为1个单位长度的圆从原点O沿数轴向右滚动一周,圆上的一点P(滚动时与点O重合)由原点到达点O′,则OO′的长度就等于圆的周长π,所以数轴上点O′代表的实数就是
π
π
,它是一个无理数.

(3)如图,在Rt△ABC中,∠C=90°,AC=2,BC=1,根据勾股定理可求得AB=
5
5
,它是一个无理数.

好了,相信大家对无理数是不是有了更具体的认识了,那么你是也试着在图形中作出两个无理数吧:
1、你能在6×8的网格图中(每个小正方形边长均为1),画出一条长为
10
的线段吗?

2、学习了实数后,我们知道数轴上的点与实数是一一对应的关系.那么你能在数轴上找到表示 -
5
的点吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

阅读材料:
学习了无理数后,某数学兴趣小组开展了一次探究活动:估算数学公式的近似值.
小明的方法:
数学公式数学公式数学公式
数学公式=3+k(0<k<1).
数学公式
∴13=9+6k+k2
∴13≈9+6k.
解得 k≈数学公式
数学公式≈3+数学公式≈3.67.
问题:
(1)请你依照小明的方法,估算数学公式的近似值;
(2)请结合上述具体实例,概括出估算数学公式的公式:已知非负整数a、b、m,若a<数学公式<a+1,且m=a2+b,则数学公式≈______(用含a、b的代数式表示);
(3)请用(2)中的结论估算数学公式的近似值.

查看答案和解析>>

科目:初中数学 来源:北京期末题 题型:解答题

阅读材料:
学习了无理数后,某数学兴趣小组开展了一次探究活动:估算的近似值。
小明的方法:

=3+k(0<k<1).
∴(2=(3+k)2
∴13=9+6k+k2
∴13≈9+6k
解得 k≈
≈3+≈3.67。
问题:(1)请你依照小明的方法,估算的近似值;
(2)请结合上述具体实例,概括出估算的公式:已知非负整数a、b、m,若a<<a+1,且m=a2+b,则≈_________________(用含a、b的代数式表示);
(3)请用(2)中的结论估算的近似值.。

查看答案和解析>>

同步练习册答案