精英家教网 > 初中数学 > 题目详情

【题目】如图,在直角坐标系中,Rt△OAB的直角顶点A在x轴上,OA=4,AB=3.动点M从点A出发,以每秒1个单位长度的速度,沿AO向终点O移动;同时点N从点O出发,以每秒1.25个单位长度的速度,沿OB向终点B移动.当两个动点运动了x秒(0<x<4)时,解答下列问题:

(1)求点N的坐标(用含x的代数式表示);
(2)设△OMN的面积是S,求S与x之间的函数表达式;当x为何值时,S有最大值?最大值是多少?
(3)在两个动点运动过程中,是否存在某一时刻,使△OMN是直角三角形?若存在,求出x的值;若不存在,请说明理由.

【答案】
(1)

解:根据题意得:MA=x,ON=1.25x,

在Rt△OAB中,由勾股定理得:OB= = =5,

作NP⊥OA于P,如图1所示:

则NP∥AB,

∴△OPN∽△OAB,

解得:OP=x,PN=

∴点N的坐标是(x,


(2)

解:在△OMN中,OM=4﹣x,OM边上的高PN=

∴S= OMPN= (4﹣x) =﹣ x2+ x,

∴S与x之间的函数表达式为S=﹣ x2+ x(0<x<4),

配方得:S=﹣ (x﹣2)2+

∵﹣ <0,

∴S有最大值,

当x=2时,S有最大值,最大值是


(3)

解:存在某一时刻,使△OMN是直角三角形,理由如下:

分两种情况:①若∠OMN=90°,如图2所示:

则MN∥AB,

此时OM=4﹣x,ON=1.25x,

∵MN∥AB,

∴△OMN∽△OAB,

解得:x=2;

②若∠ONM=90°,如图3所示:

则∠ONM=∠OAB,

此时OM=4﹣x,ON=1.25x,

∵∠ONM=∠OAB,∠MON=∠BOA,

∴△OMN∽△OBA,

解得:x=

综上所述:x的值是2秒或


【解析】(1)由勾股定理求出OB,作NP⊥OA于P,则NP∥AB,得出△OPN∽△OAB,得出比例式 ,求出OP、PN,即可得出点N的坐标;(2)由三角形的面积公式得出S是x的二次函数,即可得出S的最大值;(3)分两种情况:①若∠OMN=90°,则MN∥AB,由平行线得出△OMN∽△OAB,得出比例式,即可求出x的值;②若∠ONM=90°,则∠ONM=∠OAB,证出△OMN∽△OBA,得出比例式,求出x的值即可.
【考点精析】掌握二次函数的最值和勾股定理的概念是解答本题的根本,需要知道如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即当x=-b/2a时,y最值=(4ac-b2)/4a;直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,∠ACB=90°AC=BCADCEBECE,垂足分别为DE

1)证明:BCE≌△CAD

2)若AD=25cmBE=8cm,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某企业在“蜀南竹海”收购毛竹,直接销售,每吨可获利100元,进行粗加工,每天可加工8吨,每吨可获利800元;如果对毛竹进行精加工,每天可加工1吨,每吨可获利4000元.由于受条件限制,每天只能采用一种方式加工,要求将在一月内(30天)将这批毛竹93吨全部销售.为此企业厂长召集职工开会,让职工讨论如何加工销售更合算.

甲说:将毛竹全部进行粗加工后销售;

乙说:30天都进行精加工,未加工的毛竹直接销售;

丙说:30天中可用几天粗加工,再用几天精加工后销售;

请问厂长应采用哪位说的方案做,获利最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,点EF在对角线BD上,且BFDE

求证:四边形AECF是菱形.

AB2BF1,求四边形AECF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个不透明的口袋里装有红、黄、绿三种颜色的球(除颜色不同外其余都相同),其中红球有2个,黄球有1个,从中任意捧出1球是红球的概率为
(1)试求袋中绿球的个数;
(2)第1次从袋中任意摸出1球(不放回),第2次再任意摸出1球,请你用画树状图或列表格的方法,求两次都摸到红球的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知∠AOC=30°,∠BOC=150°,OD为∠BOA的平分线,则∠DOC=90°.若A点可表示为(2,30°),B点可表示为(4,150°),则D点可表示为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人相约元旦登山,甲、乙两人距地面的高度y(m)与登山时间x(min)之间的函数图像如图所示,根据图像所提供的信息解答下列问题:

1t= min.

2)若乙提速后,乙登山的上升速度是甲登山的上升速度3倍,

则甲登山的的上升速度是 m/min

请求出甲登山过程中,距地面的高度y(m)与登山时间x(min)之间的函数关系式.

当甲、乙两人距地面高度差为70m时,求x的值(直接写出满足条件的x值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知在ABCD,分别以AB,AD为边分别向外作等边三角形ABE和等边三角形ADF,延长CBAE于点G,G在点A,E之间,连接CE,CF,EF,则下列结论不一定正确的是(  )

A. CDF≌△EBC B. CDF=EAF

C. ECF是等边三角形 D. CGAE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)在直角坐标系中描出下列各点A(2,1),B(-2,1),C(3,2),D(-3,2);

(2)连结AB、CD观察它们与y轴的关系,

(3)猜想(a,1)(-a,1)两点的连线是否遵循上述规律.

查看答案和解析>>

同步练习册答案