精英家教网 > 初中数学 > 题目详情

问题提出:   
我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小. 而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形. 并利用差的符号来确定它们的大小,即耍比较代数式 M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0;则 M<N.    
问题解决:    
如图①.把边长为 a+b(a≠b)的大正方形分割成两个边长分别是 a、b 的小正方形及两个矩形,试比较两个小正方形的面积之和 M与两个矩形面积之和N 的大小.类比应用:
(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克、元/千克(a·b是正数.且a≠b),试比较小丽和小颖所购商品的平均价格的高低.   
(2)试比技图②、图③两个矩形的周长 M, 、N, 的大小(b>c).

解: 由因可知,M=a2 +b2,N=2ab,
∴M-N= a2 +b2 -2ab- (a-b)   
∴a≠b
∴(a-b)2>0,..M-N>0,
∴M>N
类比应用:
(1)
∵a,b是正数,且 a≠b,
 
 
即小丽的平均价格比小额的高.    
(2)由图知,M1= 2(a+b+b+c)=2a +4b+2c , N1 = 2 (a - c+ b+ 3c) = 2a+ 2b+4c.   
 M1 - N1 = (2a+ 4b+ 2c) - (2a + 2b+ 4c) =2b- 2c=2 (b- c)     
∵ b> c,
∴ 2 ( b - c) > 0, M1 - N1> 0 , M1>N1.   
 所以第一个矩形的周长大于第二个矩形的周长.    
联系拓广    
设题中图⑤的捆绑绳长为 l1
则l1 = 2a×2+2b×2+ 4c×2 = 4a + 4b+ 8c    
设题中图⑥的捆绑绳长为 l2
则 l2 =2a×2+2b×2 + 2c×2= 4a+ 4b+ 4c   
 设题中图⑦的捆绑绳长为 l3,则 13 = 3a×2+2b×2+ 3c×2= 6a+ 4b+ 6c    
l1 - l2 = ( 4a + 4b + 8c) - ( 4a + 4b + 4c ) =4c>0    
∴l1> l2 .     l2 - l3 = ( 6a+4b+ 6c) - (4a + 4b+ 4c)= 2a +2c>0    
∴l3>12.     l3 - l1= (6a+4b+ 6c) - (4a + 4b+ 8c) = 2a -2c = 2(a-c)    
∴a>c,
∴2(a-c)>0
即 13-l1>0,l3>l1     
∴第三种捆绑方法用绳最长. 第二种最短.

练习册系列答案
相关习题

科目:初中数学 来源:2013届江苏省江阴市长泾片九年级上学期期末考试数学试卷(带解析) 题型:解答题


【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.
【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.
∴M-N>0.∴M>N.
【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .
试比较M与N的大小.
(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,
AB为c)三边满足a <b < c ,现将△ABC 补成长方形,
使得△ABC的两个顶点为长方形的两个端点,第三个顶点落
在长方形的这一边的对边上。
 
①这样的长方形可以画     个;
②所画的长方形中哪个周长最小?为什么?
【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省江阴市长泾片九年级上学期期末考试数学试卷(解析版) 题型:解答题

【问题提出】我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一.所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N.

【问题解决】如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小.

解:由图可知:

∵a≠b,∴>0.

∴M-N>0.∴M>N.

【类比应用】(1)已知:多项式M =2a2-a+1 ,N =a2-2a .

试比较M与N的大小.

(2)已知:如图2,锐角△ABC (其中BC为a ,AC为 b,

AB为c)三边满足a <b < c ,现将△ABC 补成长方形,

使得△ABC的两个顶点为长方形的两个端点,第三个顶点落

在长方形的这一边的对边上。

 

①这样的长方形可以画     个;

②所画的长方形中哪个周长最小?为什么?

【拓展延伸】 已知:如图,锐角△ABC (其中BC为a,AC为b,AB为c)三边满足a <b < c ,画其BC边上的内接正方形EFGH , 使E、F两点在边BC上,G、H分别在边AC、AB上,同样还可画AC、AB边上的内接正方形,问哪条边上的内接正方形面积最大?为什么?

 

查看答案和解析>>

科目:初中数学 来源:山东省中考真题 题型:解答题

问题提出:我们在分析解决某些数学问题时,经常要比较两个数或代数式的大小,而解决问题的策略一般要进行一定的转化,其中“作差法”就是常用的方法之一,所谓“作差法”:就是通过作差、变形,并利用差的符号确定他们的大小,即要比较代数式M、N的大小,只要作出它们的差M-N,若M-N>0,则M>N;若M-N=0,则M=N;若M-N<0,则M<N。
问题解决:如图1,把边长为a+b(a≠b)的大正方形分割成两个边长分别是a、b的小正方形及两个矩形,试比较两个小正方形面积之和M与两个矩形面积之和N的大小。
解:由图可知:M=a2+b2,N=2ab,
∴M-N=a2+b2-2ab=(a-b)2
∵a≠b,
∴(a-b)2>0,
∴M-N>0,
∴M>N。
类别应用:
(1)已知小丽和小颖购买同一种商品的平均价格分别为元/千克和元/千克(a、b是正数,且a≠b),试比较小丽和小颖所购买商品的平均价格的高低。
(2)试比较图2和图3中两个矩形周长M1、N1的大小(b>c)。
联系拓广:小刚在超市里买了一些物品,用一个长方体的箱子“打包”,这个箱子的尺寸如图4所示(其中b>a>c>0),售货员分别可按图5、图6、图7三种方法进行捆绑,问哪种方法用绳最短?哪种方法用绳最长?请说明理由。

查看答案和解析>>

同步练习册答案