【题目】网络比网络的传输速度快10倍以上,因此人们对产品充满期待.华为集团计划2020年元月开始销售一款产品.根据市场营销部的规划,该产品的销售价格将随销售月份的变化而变化.若该产品第个月(为正整数)销售价格为元/台,与满足如图所示的一次函数关系:且第个月的销售数量(万台)与的关系为.
(1)该产品第6个月每台销售价格为______元;
(2)求该产品第几个月的销售额最大?该月的销售价格是多少元/台?
(3)若华为董事会要求销售该产品的月销售额不低于27500万元,则预计销售部符合销售要求的是哪几个月?
(4)若每销售1万台该产品需要在销售额中扣除元推广费用,当时销售利润最大值为22500万元时,求的值.
【答案】(1)4500元;(2)7,4000;(3)4、5、6、7、8、9、10;(4).
【解析】
(1)利用待定系数法将(2,6500),(4,5500)代入y=kx+b求k,b确定表达式,求当x=6时的y值即可;
(2)求销售额w与x之间的函数关系式,利用二次函数的最大值问题求解;
(3)分三种情况讨论假设6月份,7月份,8月份的最大销售为22500万元时,求相应的m值,再分别求出此时另外两月的总利润,通过比较作出判断.
设y=kx+b,根据图象将(2,6500),(4,5500)代入得,
,
解得, ,
∴y= -500x+7500,
当x=6时,y= -500×6+7500=4500元;
(2)设销售额为z元,
z=yp=( -500x+7500 )(x+1)= -500x2+7000x+7500= -500(x-7)2+32000,
∵z与x成二次函数,a= -500<0,开口向下,
∴当x=7时,z有最大值,
当x=7时,y=-500×7+7500=4000元.
答:该产品第7个月的销售额最大,该月的销售价格是4000元/台.
(3)z与x的图象如图的抛物线
当y=27500时,-500(x-7)2+32000=27500,
解得,x1=10,x2=4
∴预计销售部符合销售要求的是4,5,6,7,8,9,10月份.
(4)设总利润为W= -500x2+7000x+7500-m(x+1)= -500x2+(7000-m)x+7500-m,
第一种情况:当x=6时,-500×62+(7000-m) ×6+7500-m=22500,
解得,m= ,
此时7月份的总利润为-500×72+(7000-) ×7+7500-≈17714<22500,
此时8月份的总利润为-500×82+(7000-) ×8+7500-≈19929<22500,
∴当m=时,6月份利润最大,且最大值为22500万元.
第二种情况:当x=7时,-500×72+(7000-m) ×7+7500-m=22500,
解得,m=1187.5 ,
此时6月份的总利润为-500×62+(7000-1187.5) ×6+7500-1187.5=23187.5>22500,
∴当m=1187.5不符合题意,此种情况不存在.
第三种情况:当x=8时,-500×82+(7000-m) ×8+7500-m=22500,
解得,m=1000 ,
此时7月份的总利润为-500×72+(7000-1000) ×7+7500-1000=24000>22500,
∴当m=1000不符合题意,此种情况不存在.
∴当时销售利润最大值为22500万元时,此时m=.
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是矩形,E是CD上一点,连接AE,取AE的中点G,连接DG并延长交CB延长线于点F,连接AF,∠AFC=3∠EAD,若DG=4,BF=1,则AB的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】数学兴趣小组想利用所学的知识了解某广告牌的高度,已知CD=2m.经测量,得到其它数据如图所示.其中∠CAH=37°,∠DBH=67°,AB=10m,请你根据以上数据计算GH的长.(参考数据,,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知抛物线.
(1)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“方点”.试求拋物线的“方点”的坐标;
(2)如图,若将该抛物线向左平移1个单位长度,新抛物线与轴相交于、两点(在左侧),与轴相交于点,连接.若点是直线上方抛物线上的一点,求的面积的最大值;
(3)第(2)问中平移后的抛物线上是否存在点,使是以为直角边的直角三角形?若存在,直接写出所有符合条件的点的坐标;若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市2017年对市区绿化工程投入的资金是5000万元,为争创全国文明卫生城,加大对绿化工程的投入,2019年投入的资金是7200万元,且从2017年到2019年,两年间每年投入资金的年平均增长率相同.
(1)求该市对市区绿化工程投入资金的年平均增长率;
(2)若投入资金的年平均增长率不变,那么该市在2020年预计需投入多少万元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】阅读以下材料,并按要求完成相应地任务:
莱昂哈德·欧拉(Leonhard Euler)是瑞士数学家,在数学上经常见到以他的名字命名的重要常数,公式和定理,下面是欧拉发现的一个定理:在△ABC中,R和r分别为外接圆和内切圆的半径,O和I分别为其外心和内心,则.
如图1,⊙O和⊙I分别是△ABC的外接圆和内切圆,⊙I与AB相切分于点F,设⊙O的半径为R,⊙I的半径为r,外心O(三角形三边垂直平分线的交点)与内心I(三角形三条角平分线的交点)之间的距离OI=d,则有d2=R2﹣2Rr.
下面是该定理的证明过程(部分):
延长AI交⊙O于点D,过点I作⊙O的直径MN,连接DM,AN.
∵∠D=∠N,∠DMI=∠NAI(同弧所对的圆周角相等),
∴△MDI∽△ANI,
∴,
∴①,
如图2,在图1(隐去MD,AN)的基础上作⊙O的直径DE,连接BE,BD,BI,IF,
∵DE是⊙O的直径,∴∠DBE=90°,
∵⊙I与AB相切于点F,∴∠AFI=90°,
∴∠DBE=∠IFA,
∵∠BAD=∠E(同弧所对圆周角相等),
∴△AIF∽△EDB,
∴,∴②,
任务:(1)观察发现:, (用含R,d的代数式表示);
(2)请判断BD和ID的数量关系,并说明理由;
(3)请观察式子①和式子②,并利用任务(1),(2)的结论,按照上面的证明思路,完成该定理证明的剩余部分;
(4)应用:若△ABC的外接圆的半径为5cm,内切圆的半径为2cm,则△ABC的外心与内心之间的距离为 cm.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=x2+mx+n与x轴正半轴交于A,B两点(点A在点B左侧),与y轴交于点 C.
(1)若△OBC是等腰直角三角形,且其腰长为3,求抛物线的解析式;
(2)在(1)的条件下,点P为抛物线对称轴上的一点,则PA+PC的最小值为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=x2+bx的图象如图,对称轴为x=1.若关于x的一元二次方程x2+bx﹣2t=0(t为实数)在﹣1<x≤4的范围内有解,则t的取值范围是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我市有2000名学生参加了2018年全省八年级数学学业水平测试.其中有这样一题:如图,分别以线段BD的端点B、D为圆心,相同的长为半径画弧,两弧相交于A、C两点,连接AB、AD、CB、CD.若AB=2,BD=2,求四边形ABCD的面积.
统计我市学生解答和得分情况,并制作如下图表:
(1)求学业水平测试中四边形ABCD的面积;
(2)请你补全条形统计图;
(3)我市该题的平均得分为多少?
(4)我市得3分以上的人数为多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com