试题分析:(1)连接OB,根据切线的性质可得∠PBO=90°,再有OA=OB,BA⊥PO于D,公共边PO可证得△PAO≌△PBO,即得∠PAO=∠PBO=90°,从而可以证得结论;
(2)设AD=x,根据
∶
=1∶2,即可表示出FD=2x,OA=OF=2x-3,在Rt△AOD中,根据勾股定理即可列方程求解.
(1)如图,连接OB
∵PB是⊙O的切线
∴∠PBO=90°
∵OA=OB,BA⊥PO于D
∴AD=BD,∠POA=∠POB
又∵PO=PO
∴△PAO≌△PBO
∴∠PAO=∠PBO=90°
∴直线PA为⊙O的切线;
(2)∵OA=OC,AD=BD,BC=6
∴OD=
BC=3
设AD=x
∵
∶
=1∶2
∴FD=2x,OA=OF=2x-3
在Rt△AOD中,由勾股定理得(2x-3)
2=x
2+3
2解得x
1=4,x
2=0(不合题意,舍去)
∴AD=4,OA=2x-3=5
即⊙O的半径的长5.
点评:解答本题的关键是熟练掌握切线垂直于经过切点的半径,注意勾股定理在圆中的灵活应用.