精英家教网 > 初中数学 > 题目详情

【题目】如图1,在平面直角坐标系中,点A(0)B(0)C(0).DE分别是线段ACCB上的点,CDCE.将△CDE绕点C逆时针旋转一个角度α.

(1)α90°,在旋转过程中当点ADE在同一直线上时,连接ADBE,如图2.求证:ADBE,且ADBE

(2)α360°DE恰好是线段ACCB上的中点,在旋转过程中,当DEAC时,求α的值及点E的坐标.

【答案】(1)证明见解析;(2)α=45°时,点E的坐标为(1)α=225°时,点E的坐标为(1)

【解析】

(1)证明ACD≌△BCE,可得ADBE,∠CAD=∠CBE,则结论得证;

(2)由勾股定理求出AC长,可求出CD 的长,如图1,当α=∠ACO45°时,求出点E的坐标为(1),如图2,当α=∠ACD180°+ACO225°时,求出点E的坐标为(1).

(1)∵点A(0)B(0)C(0)

OC垂直平分ABOAOBOC

ACBC,∠CAB=∠CBA45°,∠ACB90°

根据旋转的性质得,∠ACD=∠BCE

又∵ACBCCDCE

∴△ACD≌△BCE(SAS)

ADBE,∠CAD=∠CBE

∴∠BAE+ABE(CAB﹣∠CAD)+(ABC+CBE)90°

∴∠AEB180°(BAE+ABE)90°,即ADBE

(2)(1)知,∠ACB90°ACBC

RtAOC中,AC2

DE是线段ACCB上的中点,

1

如图1,当α=∠ACO45°时,即∠ACO=∠CDE45°

ACDE

此时点E的坐标为(1)

如图2,当α=∠ACD180°+ACO225°时,

即∠ACO=∠CD′E′45°

ACD′E′

此时点E的坐标为(1).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如右图,正方形ABCD的边长为2,点EBC边上一点,以AB为直径在正方形内作半圆

O,将△DCE沿DE翻折,点C刚好落在半圆O的点F处,则CE的长为( )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,抛物线与直线交于A, B两点,其中点Ax轴上.

1)用含有b的代数式表示c

2)① 若点B在第一象限,且,求抛物线的解析式;

,结合函数图象,直接写出b的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小芳家的落地窗(线段DE)与公路(直线PQ)互相平行,她每天做完作业后都会在点A处向窗外的公路望去.

1)请在图中画出小芳能看到的那段公路并记为BC

2)小芳很想知道点A与公路之间的距离,于是她想到了一个办法.她测出了邻家小彬在公路BC段上走过的时间为10秒,又测量了点A到窗的距离是4米,且窗DE的长为3米,若小彬步行的平均速度为1.2/秒,请你帮助小芳计算出点A到公路的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读理解题:学习了二次根式后,你会发现一些含有根号的式子可以写成另一个式子的平方,如3+2=(1+2,我们来进行以下的探索:

a+b=(m+n2(其中abmn都是正整数),则有a+bm2+2n2+2mn,∴am2+2n2b2mn,这样就得出了把类似a+b的式子化为平方式的方法,请仿照上述方法探索并解决下列问题:

1)当abmn都为正整数时,若a+b=(m+n2,用含mn的式子分别表示ab,得a   b   

2)若a4=(mn2amn都为正整数,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yx2+bx+cx轴交于AC两点,与y轴交于B点,抛物线的顶点为点D,已知点A的坐标为(10),点B的坐标为(0,﹣3).

(1)求抛物线的解析式及顶点D的坐标.

(2)求△ACD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线的对称轴是,且过点(,0),有下列结论:;②;③;④;⑤;其中正确的结论个数为(

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:关于的一元二次方程是整数).

(1)求证:方程有两个不相等的实数根;

(2)若方程的两个实数根分别为(其中),设,则是否为变量的函数?如果是,求出函数的解析式;如果不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】2019年北疆承办了世界园艺博览会,某商店为了抓住博览会的商机,决定购买A.B两种世园会纪念品,若购进A中纪念品20件,B种纪念品10件,需要2000元;若购进A中纪念品8件,B种纪念品6件,需要1100元.

(1)求购进A.B两种纪念品每件各需要多少元?

(2)若该商店决定拿出10000元全部用来购进这两种纪念品,考虑到市场需求,要求购进A种纪念品的数量不少于B种的6倍,且少于B种纪念品数量的8倍,设购进B种纪念品a件,则该商店共有几种进货方案?

(3)在第(2)问的条件下,若销售每件A种纪念品可获利润30元,每件B种纪念品可获利润40元,设总利润为y元,请写出总利润y(元)与a(个)的函数关系式,并根据函数关系式说明总利润最高时的进货方案.

查看答案和解析>>

同步练习册答案