解:△DEF是等腰三角形
证明:如图,过点C作CP⊥AC,交AN延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB,∠BAD=∠ACP
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠ADB=∠P
∵AD=CE
∴CE=CP
∵CN=CN
∴△CPN≌△CEN
∴∠P=∠CEN
∴∠CEN=∠ADB
∴∠FDE=∠FED
∴△DEF是等腰三角形.
附加题:△DEF为等腰三角形
证明:过点C作CP⊥AC,交AM的延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB=∠ECN
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠D=∠P
∵AD=EC,CE=CP
又∵CN=CN
∴△CPN≌△CEN
∴∠P=∠E
∴∠D=∠E
∴△DEF为等腰三角形.
分析:(1)要证DF=EF,就要证出∠FDE=∠FED,也就是∠BDA=∠NEC,观察这两个角,不能直接用角的大小关系或全等来得出相等,那么可通过构建全等三角形来得出一个和两个分别相等的中间值,以此来证出两角相等,那么可过C作CP⊥AC,那么我们可通过证三角形ABD和APC全等来得出∠ADB=∠ACP,通过证三角形CPN和CEN全等来得出∠MEC=∠NPC.先看第一对三角形,已知的条件有AB=AD,一组直角,而∠ABD和∠PAC都是∠ADB的余角,因此∠ABD=∠PAD,那么两三角形就全等,可得出AC=PC=CE,∠ADB=∠NPC,又知道了∠NCE=∠PCN=45°,一条公共边CN,那么后面的一对三角形也全等,就能得出∠ADB=∠MEC=∠NPC,也就能得出∠FDE=∠FED了由此可得证.
(2)解题思路和(1)一样,也是先证三角形ABD和APC全等,后证三角形CPN和CEN全等,来得出结论.
点评:本题主要考查了等腰三角形的判定和全等三角形的判定与性质;通过已知和所求条件正确的构建出全等三角形是解题的关键.