精英家教网 > 初中数学 > 题目详情

如图1,Rt△ABC中AB=AC,点D、E是线段AC上两动点,且AD=EC,AM垂直BD,垂足为M,AM的延长线交BC于点N,直线BD与直线NE相交于点F.试判断△DEF的形状,并加以证明.
说明:(1)如果你经历反复探索,没有找到解决问题的方法,请你把探索过程中的某种思路写出来(要求至少写3步);(2)在你经历说明(1)的过程之后,可以从下列①、②中选取一个补充或者更换已知条件,完成你的证明.
1、画出将△BAD沿BA方向平移BA长,然后顺时针旋转90°后图形;
2、点K在线段BD上,且四边形AKNC为等腰梯形(AC∥KN,如图2).
附加题:如图3,若点D、E是直线AC上两动点,其他条件不变,试判断△DEF的形状,并说明理由.

解:△DEF是等腰三角形
证明:如图,过点C作CP⊥AC,交AN延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB,∠BAD=∠ACP
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠ADB=∠P
∵AD=CE
∴CE=CP
∵CN=CN
∴△CPN≌△CEN
∴∠P=∠CEN
∴∠CEN=∠ADB
∴∠FDE=∠FED
∴△DEF是等腰三角形.

附加题:△DEF为等腰三角形
证明:过点C作CP⊥AC,交AM的延长线于点P
∵Rt△ABC中AB=AC
∴∠BAC=90°,∠ACB=45°
∴∠PCN=∠ACB=∠ECN
∵AM⊥BD
∴∠ABD+∠BAM=∠BAM+∠CAP=90°
∴∠ABD=∠CAP
∴△BAD≌△ACP
∴AD=CP,∠D=∠P
∵AD=EC,CE=CP
又∵CN=CN
∴△CPN≌△CEN
∴∠P=∠E
∴∠D=∠E
∴△DEF为等腰三角形.
分析:(1)要证DF=EF,就要证出∠FDE=∠FED,也就是∠BDA=∠NEC,观察这两个角,不能直接用角的大小关系或全等来得出相等,那么可通过构建全等三角形来得出一个和两个分别相等的中间值,以此来证出两角相等,那么可过C作CP⊥AC,那么我们可通过证三角形ABD和APC全等来得出∠ADB=∠ACP,通过证三角形CPN和CEN全等来得出∠MEC=∠NPC.先看第一对三角形,已知的条件有AB=AD,一组直角,而∠ABD和∠PAC都是∠ADB的余角,因此∠ABD=∠PAD,那么两三角形就全等,可得出AC=PC=CE,∠ADB=∠NPC,又知道了∠NCE=∠PCN=45°,一条公共边CN,那么后面的一对三角形也全等,就能得出∠ADB=∠MEC=∠NPC,也就能得出∠FDE=∠FED了由此可得证.
(2)解题思路和(1)一样,也是先证三角形ABD和APC全等,后证三角形CPN和CEN全等,来得出结论.
点评:本题主要考查了等腰三角形的判定和全等三角形的判定与性质;通过已知和所求条件正确的构建出全等三角形是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•和平区二模)如图,在Rt△ABC中,∠BAC=90°,AB=6,AM为∠BAC的平分线,CM=2BM.下列结论:
①tan∠MAC=
2
2
;②点M到AB的距离是4;③
AC
CM
=
BC
CA
;④∠B=2∠C;⑤
CM
AB
=
2

其中不正确结论的序号是
①③④⑤
①③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•遵义)如图,在Rt△ABC中,∠ACB=90°,AC=BC=1,E为BC边上的一点,以A为圆心,AE为半径的圆弧交AB于点D,交AC的延长于点F,若图中两个阴影部分的面积相等,则AF的长为
2
π
π
2
π
π
(结果保留根号).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,AB+BC=9cm,则AB的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠ABC的平分线BD交AC于点D,DE⊥DB交AB于点E,设⊙O是△BDE的外接圆.
(1)求证:AC是⊙O的切线;
(2)若DE=2,BD=4,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•嘉定区二模)如图,在Rt△ABC中,∠ACB=90°,点D在AC边上,且BC2=CD•CA.
(1)求证:∠A=∠CBD;
(2)当∠A=α,BC=2时,求AD的长(用含α的锐角三角比表示).

查看答案和解析>>

同步练习册答案