精英家教网 > 初中数学 > 题目详情

【题目】某校需要招聘一名教师,对三名应聘者进行了三项素质测试下面是三名应聘者的综合测试成绩:

应聘者

成绩

项目

A

B

C

基本素质

70

65

75

专业知识

65

55

50

教学能力

80

85

85

(1)如果根据三项测试的平均成绩确定录用教师,那么谁将被录用?

(2)学校根据需要,对基本素质、专业知识、教学能力的要求不同,决定按2:1:3的比例确定其重要性,那么哪一位会被录用?

【答案】(1)A将被录用;(2)C将被录用.

【解析】

(1)根据算术平均数的计算公式进行计算即可,

(2)根据加权平均数的计算公式进行计算即可

解:的平均成绩为:,

B的平均成绩为:,

C的平均成绩为:,

则根据三项测试的平均成绩确定录用教师,A将被录用,

的测试成绩为:,

B的测试成绩为:,

C的测试成绩为:,

则按2:1:3的比例确定其重要性,C将被录用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,钝角△ABC.

(1)过AAEBC,过BBFAC,垂足分别为E,F,AE,BF相交于H;

(2)过AAM∥BC,过BBM∥AC,相交于M;

(3)若∠AMB=115°,求∠AHB.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】观察下列等式:

第一个等式:a1==-

第二个等式:a2==-

第三个等式:a3==-

第四个等式:a4==-

按上述规律,回答下列问题:

(1)请写出第六个等式:a6=_____=_____

(2)用含n的代数式表示第n个等式:an=_____=_____

(3)a1+a2+a3+a4+a5+a6=_____(得出最简结果);

(4)计算:a1+a2++an

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在坐标系中放置一菱形OABC,已知∠ABC=60°,点B在y轴上,OA=1,先将菱形OABC沿x轴的正方向无滑动翻转,每次翻转60°,连续翻转2017次,点B的落点依次为B1 , B2 , B3 , …,则B2017的坐标为(
A.(1345,0)
B.(1345.5,
C.(1345,
D.(1345.5,0)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:四边形ABCD的对角线ACBD相交于点O,则下列条件不能判定四边形ABCD是平行四边形的是  

A. B.

C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读下面材料: 如图1,在平面直角坐标系xOy中,直线y1=ax+b与双曲线y2= 交于A(1,3)和B(﹣3,﹣1)两点.
观察图象可知:
①当x=﹣3或1时,y1=y2
②当﹣3<x<0或x>1时,y1>y2 , 即通过观察函数的图象,可以得到不等式ax+b> 的解集.
有这样一个问题:求不等式x3+4x2﹣x﹣4>0的解集.
某同学根据学习以上知识的经验,对求不等式x3+4x2﹣x﹣4>0的解集进行了探究.

下面是他的探究过程,请将探究过程补充完整:
将不等式按条件进行转化:
当x=0时,原不等式不成立;
当x>0时,原不等式可以转化为x2+4x﹣1>
当x<0时,原不等式可以转化为x2+4x﹣1<
(1)构造函数,画出图象 设y3=x2+4x﹣1,y4= ,在同一坐标系中分别画出这两个函数的图象.
双曲线y4= 如图2所示,请在此坐标系中画出抛物线y3=x2+4x﹣1;(不用列表)
(2)确定两个函数图象公共点的横坐标 观察所画两个函数的图象,猜想并通过代入函数解析式验证可知:满足y3=y4的所有x的值为
(3)借助图象,写出解集 结合(1)的讨论结果,观察两个函数的图象可知:不等式x3+4x2﹣x﹣4>0的解集为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面内,分别用3根、5根、6根……火柴棒首尾依次相接,能搭成什么形状的三角形呢?通过尝试,列表如下.

火柴棒数

3

5

6

示意图

形状

等边三角形

等腰三角形

等边三角形

:(1)4根火柴棒能搭成三角形吗?

(2)8根、12根火柴棒分别能搭成几种不同形状的三角形?并画出它们的示意图.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某水果店购买一批时令水果,在20天内销售完毕,店主将本次此销售数据绘制成函数图象,如图①,日销售量y(千克)与销售时间x(天)之间的函数关系;如图②,销售单价p(元/千克)与销售时间x(天)之间的函数关系式.
(1)求y关于x和p关于x的函数关系式;
(2)若日销售量不低于36千克的时间段为“最佳销售期”,则此次销售过程中“最佳销售期”共有多少天?在此期间销售金额最高是第几天?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市某中学举行中国梦校园好声音歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.

1)根据图示填写下表;

平均数(分)

中位数(分)

众数(分)

初中部

85

高中部

85

100

2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;

3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.

查看答案和解析>>

同步练习册答案