精英家教网 > 初中数学 > 题目详情
从甲、乙两题中选做一题,如果两题都做,只以甲题计分.
【小题1】甲题:若关于x的一元二次方程有实数根α、β.求实数k的取值范围;设,求t的最小值.
【小题2】乙题:如图,在△ABC 中,点O是AC边上的一个动点,过点O作直
线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.当点O运动到何处时,四边形AECF是矩形?并证明你的结论.

【小题1】k≤-2 t的最小值为-4
【小题2】当点O运动到AC的中点时,四边形AECF是矩形解析:
本题考查一元二次方程根情况。当△≥0时有实数根。
(2)考查为四边形的判定和性质。先证明平行四边形再利用有一个角是直角的平行四边形是矩形证明。
甲题:解:(1)∵一元二次方程有实数根α、β
∴ △≥0, (2分) 即≥0,
解得k≤-2 (5分)
(2)由根与系数的关系得:α+β="-[-2(2-k)]=4-2k" (6分)
     (7分)
∵k≤-2, ∴-4≤t<0         (9分)
答:t的最小值为-4              (10分)
乙题:当点O运动到AC的中点时,四边形AECF是矩形,证明略.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网从甲、乙两题中选做一题即可.如果两题都做,只以甲题计分.
题甲:如图,反比例函数y=
kx
的图象与一次函数y=mx+b的图象交于A(1,3),B(n,-1)两点.
(1)求反比例函数与一次函数的解析式;
(2)根据图象回答:当x取何值时,反比例函数的值大于一次函数的值.

题乙:如图,在矩形ABCD中,AB=4,AD=10.直角尺的直角顶点P在AD上滑动时(点P与A,D不重合),一直角边经过点C,另一直角边AB交于点E.我们知道,结论“Rt△AEP∽Rt△DPC”成立.
(1)当∠CPD=30°时,求AE的长;
(2)是否存在这样的点P,使△DPC的周长等于△AEP周长的2倍?若存在,求出DP的长;若不存在,请说精英家教网明理由.
我选做的是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

从甲、乙两题中选做一题.如果两题都做,只以甲题计分.
题甲:若关于x一元二次方程x2-2(2-k)x+k2+12=0有实数根a,β.
(1)求实数k的取值范围;
(2)设t=
a+β
k
,求t的最小值.
题乙:如图所示,在矩形ABCD中,P是BC边上一点,连接DP并延长,交AB的延长线精英家教网于点Q.
(1)若
BP
PC
=
1
3
,求
AB
AQ
的值;
(2)若点P为BC边上的任意一点,求证:
BC
BP
-
AB
BQ
=.
我选做的是
 
题.

查看答案和解析>>

科目:初中数学 来源: 题型:

从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
甲:小东从A地出发以某一速度向B地走去,同时小明从B地出发以另-速度向A地而行.如图所示,图中精英家教网的线段y1、y2分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系.
(1)试用文字说明:交点P所表示的实际意义;
(2)试求y1、y2的解析式;
(3)试求出A、B两地之间的距离.

乙:如图,?ABCD中,E是BA的延长线上一点,CE与AD交于点F.
(1)求证:△AEF∽△DCF;精英家教网
(2)若AB=2AE,△AEF的面积为2
2
,求?ABCD的面积.

我选做的是
 
题.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网本题为选做题,从甲、乙两题中选做一题即可,如果两题都做,只以甲题计分.
选做题:甲:已知关于x的一元二次方程x2-(2m+1)x+m2+m-2=0
(1)求证:不论m取何值,方程总有两个不相等的实数根;
(2)若方程的两个实数根x1、x2满足
1
x1
+
1
x2
=1+
1
m+2
,求m的值.
乙:如图,点D是⊙O的直径CA延长线上一点,点B在⊙O上,且AB=AD=AO.
(1)求证:BD是⊙O的切线.
(2)若点E是劣弧BC上一点,AE与BC相交于点F,且△BEF的面积为8,cos∠BFA=
2
3
,求△ACF的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•峨眉山市二模)选做题:从甲、乙两题中选做一题,如果两题都做,只以甲题计分.
题甲:如图1,正比例函数y=-
1
2
x
的图象与反比例函数y=
k
x
(k≠0)
在第二象限的图象交于A点,过A点作x轴的垂线,垂足为M,已知△OAM的面积为1.
(1)求反比例函数的解析式;
(2)如果B为反比例函数图象上的点,且B点的横坐标为-1,在x轴上一点P,使PA+PB最小,求P点的坐标.
题乙:如图2,已知AB、AC分别为⊙O的直径和弦,D为BC的中点,DE⊥AC于E,DE=6,AC=16.
(1)求证:DE与⊙O相切;
(2)求直径AB的长.

查看答案和解析>>

同步练习册答案